
CIRCUIT CELLAR • OCTOBER 2016 #31548
CO

LU
M

NS

As the leaves begin to turn here in New
England, it is time to turn the page (at

least for a while) on the Internet of Things. We
have only touched on this important topic, but
for now, we will make this our last installment
discussing the Internet of Things (IoT).

As I mentioned in the last article, the Open
Web Application Security Project (OWASP) is a
great resource for you to stay up to date on
security issues. Table 1 provides the current
list of the top 10 means of web hacking. Last
month, we looked at the first five. This month,
we will look at the next five individually and
make sure we know what they are, look at a
real-world example where they have caused
trouble, and how to prevent them.

SENSITIVE DATA EXPOSURE
My first experience with the sixth most

common cause of security violations, sensitive
data exposure, came in the early 1970s. We
were designing computer controls for glass
container manufacturing. Our company built
both the machines and the controls. Initially
our designs used proprietary hardware and
proprietary software. By the end of the
1970s, my boss wanted us to use off-the-
shelf hardware and proprietary software. We

chose a system built around a DEC PDP-11/04
minicomputer and their Industrial Control
Subsystem (see Photo 1). One day, I walked
into the plant of one of our customers and
found a number of control systems using
our proprietary software on their off-the-
shelf hardware. Since this was a really good
customer who bought a lot of machines
from us, our marketing department decided
not to protest this theft. The controls costs
were about 10% of the cost of the machine.
The problem was that we exposed our
sensitive data (our software) with inadequate
protection and with a wink from our marketing
department, our customer began using it on
their hardware at no cost. Basically, in this
case, our code was not protected from reuse.

Several years later, MicroTools designed
a postage scale system for a customer. The
system weighed the item to be shipped, the
user selected the carrier (UPS, FedEx, USPS,
etc.), and the system provided the shipping
costs. Every year or so, each carrier would
update the shipping rates. Each unit in the
field was updated with new rates several
times a year. This was a lucrative business
that created a recurring revenue stream from
their existing products. These units were

EMBEDDED IN THIN SLICES

Last time, Bob detailed some security vulnerabilities in
web-enabled devices. This month he looks at five more
vulnerabilities from the Open Web Application Security
Project (OWASP).

By Bob Japenga

The Internet of Things (Part 8)
Security Vulnerabilities from the OWASP

circuitcellar.com 49
CO

LU
M

NS

sold through dealers who found out how to
update the rate data without having to pay
our customer. Again there was a symbiotic
relationship between these good dealers (who
could sell our competitors’ products instead
of ours) and our customer. Our customer
depended upon the dealer for sales. Our
customer chose not to go after these “good”
dealers. We were asked to create a new
design that included a way to protect the data
so that this could not happen. Basically, we
included a unique electronic serial number
in the hardware and created a unique option
code for each device to unlock the new rate.
The dealers did not like it, but we didn’t tick
them off enough to stop the thievery.

Both of these instances can happen today
with your IoT designs if we don’t secure our
data. Most IoT products follow the 80/20
rule of thumb for software and hardware
development costs. Software development
costs are much higher than your hardware
development costs. Foreign competition can
copy your hardware cheaply at will, but can
you protect your software from being copied?

PHYSICAL ACCESS
The bottom line is that you don’t want

anyone to be able to read your software and
sensitive data either over the air (OTA) or in the
hand. For example, someone could buy your
product, reverse engineer it, obtain sensitive
data out of the chips, and use that to launch
a significant attack on all of the products you
have deployed. We saw that with the attack on
the Jeep Cherokee that we discussed earlier in
this article series. Once inside, they will have
access to your algorithms and data if it is
not protected. So what can we do to prevent
physical access?

Your first level of protection is to prevent
someone from being able to read the software
inside the chip (e.g., FPGA, microcontroller,
flash, or SD card). Let’s look at some options
that are available.

Microcontrollers and FPGAs: Most
microcontrollers and FPGAs include methods
of locking down the software contained
internally from being read externally. But
if your data is really sensitive, pirates have
techniques to read the ones and zeros
optically! It is chilling what they can do.
Lattice Semiconductor employs a technique
that supposedly prevents that, but I am not
familiar with this process. Of course, since we
are never perfect, we want to have a device
that we can program. So you cannot lock it
down internally. With the advent of IoT, OTA
firmware updates are huge. So that defeats
the built-in lock down. What we need are
more sophisticated lock downs that include

TABLE 1
The top 10 means of web hacking

Rank Title
1 Code Injection

2 Broken Authentication and Session Management

3 Cross Site Scripting (XSS)

4 Insecure Direct Object Reference

5 Security Misconfiguration

6 Sensitive Data exposure

7 Missing Function Level Access Control

8 Cross-site Request Forgery

9 Using Components with Known Vulnerabilities

10 Unvalidated Redirects and Forwards

PHOTO 1
A DEC PDP-11/04 minicomputer
(Source: www.corestore.org/1104.
htm)

CIRCUIT CELLAR • OCTOBER 2016 #31550
CO

LU
M

NS

a cryptographic key or some other means of
authentication. If you are aware of any such
devices, please drop me a line.

SD Cards: Many designs now use SD
cards as the base flash memory. Both the
software and any sensitive data can be easily
copied and reverse engineered. All data that
you want to protect should be encrypted.
Operating systems like Android and Linux
build this into their infrastructure. I would
strongly recommend not using SD cards in
designs that contain sensitive data unless the
data is encrypted.

Flash Memory Chips: I am not familiar
with any means to prevent flash memory
chips from being read once they are extracted
from your PCB. If you are aware of some
techniques, please drop me a line.

Remember to design for the worst. As you
design, assume that your worst enemy can
read all of the data. Keep in mind that every
piece of data that goes over the Internet can
be read. Keep in mind that every piece of data
inside your device can be read. No critical
keys should be stored. No passwords should
be stored. What this approach will do is to
identify the data that you really care about.
And then you can come up with a scheme to
protect this—your most sensitive data.

OVER-THE-AIR ACCESS
Most of the techniques for preventing OTA

access to your sensitive software and data
have been covered in previous articles in this
series. Simple things like not running your
applications as root or with root privileges can
be a major step. I have two Android devices at
home that will not play certain video content
that I get from a pay-for-view streaming
provider. The problem (as I am told by their
tech support) is that the applications are
running with root privileges and the licensed
material won’t run in that environment

The bottom line: minimize physical access,
assume that everyone can see your data, and
be hyper vigilant about any means of OTA
access.

MISSING FUNCTION-LEVEL

ACCESS CONTROL
And that leads nicely into the seventh

most common cause of security violations on
the web: devices that don’t require any level
of access control. We have covered most of
these in previous articles when we discussed:
open ports; anonymous logins to FTP, SFTP, or
browser access; and console ports. Protecting
console ports is something we have not been
doing but will begin doing that going forward.
The bottom line: do not allow any remote or
local access without a strong username and
password.

CROSS-SITE REQUEST FORGERY
Most of us have experienced this as a

user. This is when you are asked to provide
your user name and password to some
financial institution. This is sometimes called
“phishing.“ I am not sure how this could be
applied to IoT devices. Perhaps you have
experienced this. Drop me a line and let me
know. Bottom line: don’t worry about this
one.

USING COMPONENTS WITH
KNOWN VULNERABILITIES

The ninth most prevalent security
vulnerability for web services is using
components of libraries that have
vulnerabilities. The OWASP/WASC limits
them to “known” vulnerabilities. But there
is nothing to stop an unknown vulnerability
from wreaking havoc with your IoT. This can
be the most difficult of all of the security
vulnerabilities to mitigate. For example,
one of the most common libraries used in
our IoT devices is OpenSSL. They maintain
a list of known vulnerabilities that provides
some interesting bedtime reading. Seriously,
take a look this list. It demonstrates how
difficult it is to create secure software. But
it also demonstrates that we are going to
incorporate components that have known
vulnerabilities. It is a way of life. As we
discussed in an earlier article in this series,
your best approach is to keep abreast of all
of the libraries or components that you are
incorporating into your IoT device.

The bottom line: only incorporate perfect
libraries or components into your IoT device.
But seriously, to cover this, we must do
two things. Keep abreast of the known
vulnerabilities in the libraries we use. And
always provide a means for updating all
software-driven devices.

UNVALIDATED REDIRECTS &
FORWARDS

This is normally a problem for web
designers who open their site to spammers
and phishers with their insecure designs.

circuitcellar.com/ccmaterials

REFERNCES
Lattice Semiconductor, “Security Aspects of
Lattice Semiconductor iCE40 Mobile FPGA
Devices,” v1.0.0, 2011.

Open Web Application Security Project, www.
owasp.org.

OpenSSL Software Foundation,
“Vulnerabilities,” www.openssl.org/news/
vulnerabilities.html.

circuitcellar.com 51
CO

LU
M

NS

ABOUT THE AUTHOR
Bob Japenga has been designing embedded
systems since 1973. In 1988, along with his
best friend, he started MicroTools, which
specializes in creating a variety of real-
time embedded systems. With a combined
embedded systems experience base of more
than 200 years, they love to tackle impossible
problems together. Bob has been awarded 11
patents in many areas of embedded systems
and motion control. You can reach him at
rjapenga@microtoolsinc.com.

Some unsuspecting client is phished and then
fooled into thinking that the content they are
seeing is from the legitimate website. For
example, this happened to the CNN website
and it allowed spammers to display their
malicious content while the URL the client saw
had “cnn.com” as an address.

But this can be a problem for IoT devices
in several ways. For example, one way
might be if your local embedded web server
has a feature that allows your server to be
redirected or forward a request to another of
your IoT devices based on the parameter in
the URL. This might be useful if the device
was down and it wanted the server to access
someone else’s data. This would allow your
IoT device to become a relay for all sorts
of malicious content. And the unsuspecting
bloke would think it was coming from you.

The core problem here is a design that
allows your web server to redirect or forward
to another site based on a URL parameter or
some other mechanism without validating the
redirection or forward. For example, if your
web server in your IoT device had this PHP
code in it:

$redirect_url = $_GET[‘url’];
 header(“Location: “ . $redirect_url);

The bottom line: don’t forward or redirect

requests to sites that are not validated.

SECURITY RECAP
In these past 18 months, we have covered

a lot of information about the Internet of
Things. We started in June 2015 by looking at
some options you have for connecting to the
Internet. Then in August of that year, we
looked at how to select a wireless carrier for
your IoT device. In October of 2015, we looked
at some options for using a very small
microprocessor to connect wirelessly to the
Internet. In December of 2015, we looked at
the costs of certifying your IoT device. Then,
in February of 2016, we delivered the first of
five articles dealing with IoT security.
Sometimes when you take many things in thin
slices, you can have yourself quite a feast.

