
CIRCUIT CELLAR • AUGUST 2016 #31346
CO

LU
M

NS

Today I got a message on Facebook from
a friend highlighting a way that someone

can steal your debit card PIN at the grocery
store.[1] The idea is that your fingers warm
up the keypad in the order that you punch in
the PIN. And with a simple infrared camera
that attaches to the back of your phone, the
thief can get the keys pressed and the order
in which you press them.[2] Ingenious!

This is what we are up against in creating
secure Internet of things (IoT) devices.
Incredibly ingenious hackers who will think
outside the box to do whatever malicious
activity that they choose. In the previous
three articles, I presented three real-world
examples (i.e., a car, a medical device,
and a security system) and looked at the
vulnerabilities of each. I also described how
we can guard against such attacks. We need
to understand the threats in a systematic way.
But even if we close the known vulnerabilities,
we need to protect our systems from these
incredibly ingenious hackers who are coming
up with some surprisingly simple methods of
wreaking havoc.

Although we need to recognize the need for
outside the box thinking, this month I want to

step back and take a systematic look at threats
to IoT security. Last month, I mentioned the
Mitre website, which enumerates the kinds of
security threats that can exist. This month,
I'll introduce you to the Open Web Application
Security Project (www.owasp.org), which
is another resource for you to “tool up” on
security issues. One service they provide is a
list of the top 10 security vulnerabilities and
specific real-world examples of systems that
manifested these vulnerabilities.[3] Table 1
is the current list. Let’s look at the first five
individually and make sure we know what they
are. After we look at a real-world example
where they have caused trouble, I'll explain
how to prevent them.

CODE INJECTION
Any web interface that allows unintended

code to be introduced via the data stream and
subsequently executed creates a code injection
vulnerability. We addressed stack overflows in
the April article in this series which can be
used to create code injection. However, many
systems allow simpler mechanisms than stack
overflow (where you really need the source
code to determine where on the stack your

EMBEDDED IN THIN SLICES

In this installment, Bob addresses the top five security
vulnerabilities in web-enabled devices. He covers how
they affect real systems and what you can do to mitigate
the risk.

By Bob Japenga

The Internet of Things (Part 8)
Security for Web-Enabled Devices

circuitcellar.com 47
CO

LU
M

NS

injected code is located).
One example happens with the widely

used SQL. If your IoT device uses SQL, certain
features of SQL can be exploited by a hacker
to inject code. A simplistic example would be
when the user (the hacker) enters a username
that contains an escape character (that tells
the SQL parser to look for a new command)
and an SQL command like DROP TABLE. SQL
is so powerful and so easy to use that one can
get blinded by the need to do proper input
validation or range checking on certain fields
that are not strongly typed.

The risk is real and can be costly. If the
data that you are storing is worth something
to you and your customers, hackers can
and do target sites for ransom. Or they can
show people how to use your data for free.
One of the most widely published was the
Code Injection hack that came to American
Airlines and United Airlines.[4] Usernames and
passwords were stolen via SQL code injection
and the hackers booked flights for free.

The key to preventing code injection is to
securely handle your input and your output.
Certain APIs (rather than using raw SQA)
provide this for you. If possible, whitelist
your input data and be rigorous in enforcing
the rule that only data that falls within your
whitelist can be used as input. Make sure
that no escape sequences get passed to the
parser. With SQL, the mysql_real_escape_
string()function will do that for you.
Additionally, if your IoT device allows, you can
make sure that code cannot be run in the data
space. Also, as we talked about earlier, make
sure that only authenticated code can actually
be run. There are integrated circuit chips that
can help you with that, which could be subject
of a future article if there is enough interest.

BROKEN AUTHENTICATION &
SESSION MANAGEMENT

We have addressed this pretty extensively
with real world examples in the other two
articles so we won’t revisit this in detail.
Suffice it to say that username and password
selection are critical to authenticating usage.
We need to authenticate access to critical
data as well as authenticating the software
update process for our IoT devices.

CROSS SITE SCRIPTING (XSS)
XSS vulnerabilities are really a specialized

form of code injection. They can be classified
as Server Side XSS or Client Side XSS. Server
Side XSS occurs when the IoT web server
injects a script into the client's browser with
unintended results. A simple example of
Server XSS would be if your IoT allows the
user to add comments to your web page.
If included in that comment was some

executable script, when a user accessed your
web page with that comment, if it was not
validated or encoded, all kinds of havoc could
happen as the script runs on the client.

Server side XSS is best prevented by
creating context sensitive output encoding.
The OWASP web site has a great check list for
helping you do this.[5]

Client Side XSS vulnerability occurs when
an unsafe JavaScript function is used to
update the data on the browser. The kind
of calls that are unsafe in JavaScript are
those that allow other JavaScript functions
to be added to the web presentation (called
a Document Object Model, or DOM). The
challenge for us as developers is not only to
know which JavaScript functions are unsafe
but which libraries contain these unsafe
JavaScript functions (like JQuery). The OWASP
website provides a PowerPoint presentation
with just such a list of unsafe Javascript
calls and JQuery APIs.[6] (Jquery is a popular
JavaScript library: www.jquery.com.)

This is not for the faint of heart. This
requires careful thought, understanding,
and clean design. But the risks are immense.
Imagine the embarrassment for the UK
Parliament to find that a hacker could easily
post any YouTube video on its very helpful
site and make it look like it’s coming from
the government.[7] And all because their web
server had an XSS vulnerability.

INSECURE DIRECT OBJECT
REFERENCE

A direct object reference is insecure when
an IoT device provides access to some internal
object like a file. If the design does not provide
any authentication check, a hacker could
manipulate these objects for destructive
ends. An example of such a vulnerability was
the Brightbox router supplied in the UK.[8]
With virtually no effort, access to security

TABLE 1
The top 10 means of web hacking

Rank Title
1 Code Injection

2 Broken Authentication and Session Management

3 Cross Site Scripting (XSS)

4 Insecure Direct Object Reference

5 Security Misconfiguration

6 Sensitive Data exposure

7 Missing Function Level Access Control

8 Cross-site Request Forgery

9 Using Components with Known Vulnerabilities

10 Unvalidated Redirects and Forwards

CIRCUIT CELLAR • AUGUST 2016 #31348
CO

LU
M

NS

information is available by just using the
URL and the file name (e.g. 192.168.1.1/cgi/
cgi_status.js).

What this means is that someone who is
on your home or office Wi-Fi network could,
without authentication or authorization, get
all kinds of details about your login on the LAN
network. And you thought that you only gave
them your WPA key!

The implications for your IoT devices are
significant if it is designed like the Brightbox
router. Your user could access a lot of files
that you never intended for their eyes.

Most of these vulnerabilities can be
resolved as part of your configuration of your
web server on the IoT device. The Apache
server has literally hundreds of configuration

parameters to tailor access on your device.
You need to understand what each actually
does. And that leads to the fifth and final
vulnerability that we will talk about this
month.

SECURITY MISCONFIGURATION
If your embedded web server or web

browser is not configured correctly, you
could be exposing your device to some
significant security vulnerabilities. All of the
major web servers have pretty complicated
configurations. And if this isn’t something you
do every day, a lot will seem mysterious and
mind boggling. It is important to go through
all of the configuration parameters and make
sure that you have it set to the security level
you desire. Once you have it like you think you
want it, you can test your web server or web
browser (not as common on the IoT devices
we design) on a test site like Qualys SSL Labs
(www.ssllabs.com).

Let’s walk through the configuration of
NgInx (www.nginx.com), which is one web
server that we use quite often on our IoT
devices. Out of the box, NgInx is quite secure.
But let me walk you through some steps that
will make it even more secure.

Since much of what we use is open source,
this means that hackers have the ability to
discover soft underbellies of the software.
But open source also means a plethora of
versions. Although securing your headers
doesn’t ensure a bulletproof IoT device, it
is a step in the right direction. Out of the
box, a query of your web server will reveal
something like this:

HTTP/1.1 200 OK
Server: nginx/1.3.0

Why give the hacker a head start? Change
the server_tokens parameter in the
configuration file to off and hackers will not
know what version you are running.

HTTP/1.1 200 OK
Server: nginx

It would be great if we could eliminate the
"nginx," but marketing has its ways.

Another header that you want to prevent
from being disclosed is the:

X-Powered-By:

Again, NgInx doesn’t allow you to not
disclose this, but you can prevent the
backend engine from disclosing it to NgInx.
For example, if you are using PHP, you
would turn expose_php to off in the php.
ini file. Reducing the size of the headers

circuitcellar.com/ccmaterials

REFERNCES
[1] Infrared PIN detector
http://tiphero.com/
scam-alert-how-to-keep-
your-atm-code-safe-
from-a-new-threat/?utm_
source=fbbp&utm_
medium=dk&utm_
campaign=atm-scam-alert-dk

[2] Check out the FLIR
One http://www.wired.
com/2014/08/a-review-of-
the-iphone-infrared-camera-
the-flir-one/

ABOUT THE AUTHOR
Bob Japenga has been designing embedded
systems since 1973. In 1988, along with his
best friend, he started MicroTools, which
specializes in creating a variety of real-
time embedded systems. With a combined
embedded systems experience base of more
than 200 years, they love to tackle impossible
problems together. Bob has been awarded 11
patents in many areas of embedded systems
and motion control. You can reach him at
rjapenga@microtoolsinc.com.

[3] OWASP Top Ten https://www.owasp.org/
index.php/OWASP_Top_10/Mapping_to_WHID

[4] United and American offer free flights
http://www.nydailynews.com/news/national/
thousands-american-united-airlines-accounts-
hacked-article-1.2075162

[5] OWASP XSS Cheat sheet, www.owasp.
org/index.php/XSS_(Cross_Site_Scripting)_
Prevention_Cheat_Sheet

[6] Power Point presentation which identifies
unsafe JavaScript functions, https://www.
owasp.org/images/c/c5/Unraveling_some_
Mysteries_around_DOM-based_XSS.pdf

[7] UK Parliament Hacked http://www.
telegraph.co.uk/technology/internet-
security/10673520/Revealed-key-UK-websites-
vulnerable-to-hackers.html

[8] S. Helme, “ EE BrightBox Router Hacked—
Bares All if You Ask Nicely,” 2014,” https://
scotthelme.co.uk/ee-brightbox-router-hacked/.

circuitcellar.com 49
CO

LU
M

NS

has the positive side effect of reducing the
bandwidth. This is important to many of our
designs which obtain very cheap data plans
with under 1 MB per month.

You want to configure your system to give
as little information as necessary. Most web
servers, including NgInx include some pre-
canned error pages for HTTP errors 401, 403,
etc. Changing the error_page parameter to
only disclose what you want disclosed to the
user is a step in the right direction. For the
most part, silently ignoring errors works for
the client. You can still obtain the errors from
the logs from most web servers if need be.

Out of the box, the NgInx’s SSL is not
configured as tightly as we would like. Table 2
shows some parameters that we consider best
for the IoT environment.

In many of our designs, the IoT device is
only going to be talked to by our customer’s
server. Their customers will access the data
only through that server. So it makes sense
to limit the access to only your customer’s
server. With NgInx this is done with the
allow parameter. This is an often overlooked
security feature that can drastically improve
the security of your device.

FIRST LINE OF DEFENSE
Although it is important to pursue outside

the box ideas for protecting the security of
your IoT device, systematically addressing
the major issues where others have failed is
really your first line of defense. Next time we
will look at the last five vulnerabilities from
the OWASP website. But of course, only in thin
slices.

TABLE 2
Some of the best parameters for the
IoT environment

Parameter Description
ssl_protocols
TLSv1.2;

Since you are generally in control of your device, why not limit this to the
latest (1.2).

ssl_ciphers

We have tested the difference between AES128 and AES256 and found very
little degradation in performance with the higher encryption. Thus we
favor EECDH+AESGCM:EDH+AESGCM:AES256+EECDH:AES256+EDH which
define the key exchange algorithm and the bulk encryption algorithm
(AES256).

ssl_prefer_
server_ciphers

This should be configured to “on” for maximum security since it forces the
client to use the server’s ciphers.

