
CIRCUIT CELLAR • FEBRUARY 2016 #30750
CO

LU
M

NS

In December of last year, a “glitch” was
discovered in the state of Washington

computer system that gave thousands of
prisoners early release. Some people blamed
out-of-date software. Those of us who design
complex systems know that new software
can let serious errors get past us. At my
company, our motto is: “If it’s not tested, it
doesn’t work.” But the corollary to that motto
is: “Even if it is tested, it might not work.”

Last month we continued our article
series on the Internet of Things by looking
at actual security failures in a real system.
We examined the faults in order to see what
we could learn from them so as to not repeat
their mistakes. This month we will look at a
medical device that had a number of security
issues.

Billy Rios is a well-known security expert.
In May of 2014, he privately documented
to Hospira, a pharmaceutical and medical
instrument supplier, a large number of
vulnerabilities in their LifeCare PCA Infusion
System. In April of 2015, these deficiencies
were publicly disclosed by another researcher.

INFUSION SYSTEM PROBLEMS

What are infusion systems? They are used
in medical facilities to dispense medications,
nutrients, or other fluids into a patient. They
consist of an infusion pump and an embedded
system to provide a user interface and the
controls for its operation. They are supposed
to be designed so that no single point of
failure will harm the patient. The devices
have the capability of delivering lethal doses
of some medications.

What's the nature of the problem? The
FDA began notifying users in May of 2015
that the LifeCare PCA had serious security
issues. Since the units can be programmed
remotely through a healthcare facility’s
Ethernet or wireless network, these security
issues opened up significant risks for the
users of these devices. To quote the FDA, “An
unauthorized user with malicious intent could
access the pump remotely and modify the
dosage it delivers, which could lead to over-
or under-infusion of critical therapies.”

What were the security problems? An
investigative arm of Homeland Security did
further research on the device and identified
the following security problems:

EMBEDDED IN THIN SLICES

Bob presents another real example of a device with
some security issues related to the Internet of Things.
He identifies the security issues and provides some tips
for embedded systems designers who want to want to
secure their devices.

By Bob Japenga

The Internet of Things (Part 6)
Internet of Things Security

circuitcellar.com 51
CO

LU
M

NS

Stack Buffer Overflow: The device
contained conditions which would allow a
stack buffer overflow. This could be exploited
to allow execution of an attacker’s code on
the device.

Improper Authentication: The device
allowed unauthenticated remote access with
root privileges over telnet

Hardcoded Passwords: The device allowed
the same password to authenticate users for
all devices

Insufficient Verification of Data
Authenticity: The device did not protect
against unauthenticated access that modified
the operation of the device.

Wi-Fi keys were stored in plain text.
Private keys were stored on the device.
Vulnerable Third-Party Software: The

device used a version of a software library
that had known vulnerabilities

Externally Induced System Lock-Up: Under
a denial of service attack, certain unspecified
functionality required a manual reboot to
regain operation

Some of these were covered in the last
article so we will not cover them again in
depth. But let’s look at the others more
closely.

STACK BUFFER OVERFLOW
In 1999, the common web server,

Netscape, was vulnerable to a stack buffer
overflow problem. Attackers were able to do
malicious things by causing Netscape’s stack
to overflow when a large input was sent to
the server. That was my first exposure to this
kind of attack. Just what is it and how can we
protect against it?

Data sent over the external network is
written to a buffer inside the system. When
the size in bytes of external input data is
not checked or is incorrect before storing its
contents, it’s possible that the destination
buffer can overflow. If that destination buffer
is on the stack, the stack variable overwrites
other parts of the stack. Normally, that causes
the program to just stop working because the
return address is corrupted. But a carefully
planned attack overflows the stack in such
a way that it creates a valid address in the
return address ("Function Return Address" in
Figure 1) with new code that it has included
in the buffer ("Locally Declared Variables in
Figure 1). In that way it can take control of
the software with its own code. Generally,
this requires access to the source code or
a lot of trial and error attempts at reverse
engineering the code to figure this out.

Let me see if a picture and some poorly
written code can illustrate how this happens.

Figure 1 is a representative C stack. The
code in Listing 1 is an extremely over-
simplified, buggy Listener function that
takes data from a TCP/IP socket, puts it in
DataInputBuffer, and then processes it.
DataInputBuffer is an automatic variable
that is stored on the stack among the locally
declared variables (the green area in Figure
1).

The problem is that a typo set the buffer
size to 1000 instead of 2000. Most records
are less than 1000 so the problem is never
discovered during testing. An attacker can
send data to the socket that includes code
that overwrites the return address ("Function
Return Address" in Figure 1) with a pointer to
his own code allowing him to do all kinds of
mischief and harm.

What can you do to prevent this (other
than write perfect code)? Here are three
things presented in decreasing order of
effectiveness. First, you should digitally bind
all memory writes to the size of the buffer. The
size parameter of a function like recv should
be dependent upon the actual buffer size—not

ssize_t Listener (int Socket)
{
 char DataInputBuffer[1000];
 ssize_t NumberOfBytes;
 NumberOfBytes=recv(Socket,DataInputBuffer,2000,MSG_WAIT_ALL);
 ProcessTheData(DataInputBuffer);
 return NumberOfBytes;
}

LISTING 1
An over-simplified, buggy “Listener” function that takes data from a TCP/IP socket, puts it in DataInputBuffer,
and then processes it.

FIGURE 1
Typical C stack structure

Function parameters
Function return address
Saved previous frame pointer
Exception handler frame
Locally declared variable
Extra data

Higher memory

Lower memory

Typical C Stack structure

Callee saved records

CIRCUIT CELLAR • FEBRUARY 2016 #30752
CO

LU
M

NS

a magic number like 2000. Second, never use
strcpy if you are writing in C or any transfer
that doesn’t bound the number of bytes.
Third, you should avoid using stack variables
for external input buffers. Using a nonstack
buffer overflow to gain rogue control of the
software is very difficult. In the LifeCare PCA,
the input buffer was on the stack.

But what if the stack buffer overflow is
in a library you are using? My best advice is
to test for it. If a library function is handling
your external input data, you should have test
cases that broadly overrun the bounds of the
buffers. Don’t just test to pass; test to break.

IMPROPER AUTHENTICATION
Another area of deficiency that was

discovered was that the LifeCare PCA left ports
open without requiring any authentication.
We addressed this in detail in the last article.
Anyone on the Ethernet or wireless network
in the medical facility could do just about
anything with the device. This was the core

problem with the Infusion System. Without
this problem, the hardcoded passwords,
the Wi-Fi keys stored in plain text and the
private keys issue would not be as serious.
I cannot emphasize this enough. This is
your first line of defense. Never leave a port
open to an unauthenticated access. Make the
authentication as strong as possible. And
don’t give them root access.

Hardcoded Passwords: As was mentioned
in the last article, keeping hardcoded
passwords secret can be next to impossible.
Avoid them at all costs. However, if you leave
open unauthenticated ports, you are still
vulnerable with algorithmically generated
passwords. As we saw with the Jeep last
time, the hacker with root access will find the
algorithms you are using for generating the
password.

Wi-Fi Keys Kept in Plain Text: As with
hardcoded passwords, if the hacker can
access your device, encrypting and hiding
the Wi-Fi keys just slows them down. But it
is a good second line of defense—just in case
someone breaks in. It will slow them down
and require more sophisticated tools.

Insufficient verification of data
authenticity: On several systems we have
designed, we maintain an MD5 checksum
of every static file (files that don’t change).
This is very useful for detecting when flash
file systems start to fail or wear out. This is
a topic for another day. We had to upgrade
one system’s ECC algorithm as some chips
were wearing out early. And we detected it by
maintaining an MD5 checksum for each file.

But maintaining an independent
verification of the data authenticity can also
help prevent attackers who have already
broken over the wall and are changing files.
As the Jeep break-in from last time illustrated,
this is only a secondary level of protection. If
they already have root access to your system,
they can change things (including your MD5
files). But this will prevent other kinds of
attacks from altering the operation of your
device.

DEFECTIVE LIBRARY
One of the risks facing all of us who design

complex systems with loads of libraries is that
the “other guy’s” library may have security
holes in it. Everyone was shocked when
we discovered in 2014 that the main open-
source library used for using secure sockets
(OpenSSL) had a security flaw in it. This
affected a number of systems we designed.
The LifeCare PCA was using a version of a web
server that apparently had security flaws.

How can you design around that? You
can’t. But we can do two things. Have at least
one person in your organization who loves to

circuitcellar.com/ccmaterials

RESOURCES
ICS-CERT, “Hospira LifeCare
PCA Infusion System Vulner-
abilities (Update B),” US De-
partment of Homeland Secu-
rity (DHS), 2015, https://ics-
cert.us-cert.gov/advisories/
ICSA-15-125-01B.

ABOUT THE AUTHOR
Bob Japenga has been designing embedded
systems since 1973. In 1988, along with his
best friend, he started MicroTools, which spe-
cializes in creating a variety of real-time em-
bedded systems. With a combined embedded
systems experience base of more than 200
years, they love to tackle impossible problems
together. Bob has been awarded 11 patents in
many areas of embedded systems and motion
control. You can reach him at rjapenga@mi-
crotoolsinc.com.

M. Martinez, “3,200 Inmates Mistakenly Re-
lease Early in Washington State,” CNN.com,
2015, www.cnn.com/2015/12/22/us/washing-
ton-state-inmates-early-release-sentencing-er-
rors/.

US Center for Devices and Radiological Health,
“Content of Premarket Submissions for Man-
agement of Cybersecurity in Medical Devices,”
2014, www.fda.gov/downloads/medicaldevices/
deviceregulationandguidance/guidancedocu-
ments/ucm356190.pdf.

US Food and Drug Administration, “Vulner-
abilities of Hospira LifeCare PCA3 and PCA5
Infusion Pump Systems: FDA Safety Commu-
nication,” 2015, www.fda.gov/MedicalDevices/
Safety/AlertsandNotices/ucm446809.htm.

circuitcellar.com 53
CO

LU
M

NS

keep up with these kinds of things. You need
to be aware of all of the libraries you are using
(no small task) and keep your ears and eyes
open for any possible deficiencies that may be
uncovered in their latest release.

The other thing you can do is to make sure
that there is a way to update the software.
This is your final line of defense. The enemy
is over the wall. You have poured boiling oil
down their backs and they just keep coming.
It’s time to move to another castle and load
the updated version of the library into your
system. For devices that are certified, this
may require recertification. This is time
consuming and costly. It may already be too
late if your reputation was seriously harmed
in the attack.

DENIAL OF SERVICE ATTACKS
Finally, the LifeCare PCA was susceptible

to a Denial of Service (DoS) attack. Just
what is that? The most straightforward DoS
attacks happen when someone sends more
data than the web server can handle. Our
devices should not become crippled in their
critical functionality with a DoS attack. We
cannot prevent a DoS attack. Perhaps our
Internet connection will go down during such
an attack. But we cannot stop dispensing the

drugs. We cannot stop performing our central
tasks.

How do we do this? Certainly, we have to
test what our device does under a DoS attack.
But that is not enough. To do this requires
planning at the design stage. We cannot
discover this during final test. We need to
design our critical tasks (e.g., dispensing
drugs) assuming that the network interface
is locked up and not available. We need to
design our support infrastructure assuming
that our network interface is going to get the
maximum amount of traffic. And we need to
guarantee that it cannot steal the necessary
processing time or memory resources needed
to accomplish our critical functionally. If
necessary, we have to have ways to monitor
the network and throttle it so that you can
still perform your key functionality—no
matter what!

SECURITY MATTERS
Security is a big issue in the embedded

world. We are not doing a good job at it. We
need to get better at it. Looking at how others
got in trouble can help us see our own blind
spots. Next time we will look at another
embedded device’s security issues—but as
always—only in thin slices.

