
CIRCUIT CELLAR • FEBRUARY 2016 #30744
CO

LU
M

NS

This morning, my wife and I were talking
with a friend and his wife about the

Internet of Things (IoT). I know. I know.
Aren’t there better things to talk about on a
beautiful day with dear friends? But I am a
techie, and since you are reading this article,
so are you. My friend said that he couldn’t
see any reason to have his refrigerator or
his toilet connected to the Internet. When I,
with my impeccable techie logic, persuasively
convinced him of the reason why refrigerators
and toilets will connect to the Internet, he
responded by saying that he would not allow
such devices into his home because of security
issues. Touché! The way things are right now
in the infancy of the IoT, he is correct. We,
the designers of the IoT devices have a lot
to learn about security. Over the next couple
of months, we will look at some of the ways
the security of existing IoT devices has been
compromised so that we can get better at
this.

In July of 2015, many of us shuddered
when we read about the Jeep Cherokee that
could be controlled remotely by a hacker.
Admittedly these weren’t every day hackers:
they were working on a grant to attempt to

demonstrate security holes in the automotive
industry. These two men, Charlie Miller and
Chris Valasek, hacked into a Jeep with the
driver's permission to demonstrate a series
of massive security vulnerabilities. They could
control the A/C, set the volume and station
selection of the radio, turn on the windshield
wipers and even put their picture on the
screen. All of this without ever touching
the Jeep. They then remotely downloaded
a hacked version of the firmware into the
car, which enabled them to do much more
serious things: turn off the brakes, stop the
transmission from functioning, and jiggle the
steering wheel. All of this was done without
the owner of the car granting them any
physical access. Shuddering yet?

Thankfully, the car manufacturer (Fiat-
Chrysler) quickly responded to close the most
egregious holes. But as we look at what they
did wrong, we can improve the security of
the IoT devices that we design. As we do this
we have to keep in mind the warning that
Miller and Valasek gave at the beginning of
their talk in August 2015: “Don’t ever say
that your system is hack proof.” With enough
time and money, I agree with them that all

EMBEDDED IN THIN SLICES

System and data security should be of utmost importance
to any professional engineer who designs devices for
the Internet of Things (IoT). This month Bob looks at
security issues related to the IoT and what embedded
systems designers can do to secure their devices.

By Bob Japenga

The Internet of Things (Part 4)
IoT Security

circuitcellar.com 45
CO

LU
M

NS

of our systems could be hacked. Our job is
to make it extremely expensive in time and
money to accomplish the fact. That is where
we are going over the next few articles. How
can we make the IoT devices we design be
more secure?

TOP SECURITY VIOLATIONS
Think of security as the protection of

a medieval castle. You have the moat.
You have the door and the wall if they get
by the moat. And you have the boiling oil if
they get through the door. Finally, you have
your valiant warriors willing to fight to the
death to protect the castle. To improve the
security of your IoT device, you need many
layers of protection. This doesn’t mean that
there is only one entrance to the castle. We
will talk about underground tunnels and the
like next time. Although the Miller and Valasek
presentation is full of many interesting
details, the major areas where Fiat-Chrysler
went wrong are quite simple: an open port
that allowed hackers to telnet into the box
(the moat); no authentication method once
there was the open port (the wall or door);
a firmware update process that was not
encrypted or signed (the boiling oil); and the
critical data bus was not sufficiently protected
(the fight to the death). Let’s look at each one
of these and see how we can make our IoT
systems more secure.

OPEN PORTS
Miller and Valasek found that the Jeep

left open port 6667 over both Wi-Fi and
over the cell network. To their credit, in July
2015, the open port on the cell network was
closed within days of the article exposing the
vulnerability. Without this port, this means
of remote access over the cell network was
eliminated. The vulnerability over Wi-Fi still
existed (needs a recall to correct), but the
hacker would need to be within 30 m of the
car to have remote access. A hacker would
need to trail the targeted car for several
hours while attempting to hack the WPA
password and know the approximate year of
manufacturer. This doesn’t pose a significant
threat to the entire fleet.

So what does it mean to leave a port open?
Let’s first make sure we understand what a
port is. Devices on the Internet communicate
with each other over a protocol called IP.
Under this protocol each device has an IP
address. For every address, the device can
listen and talk on many ports. When you
use your browser to point at a website with
HTTP, it connects to the web server listening
on port 80. For secure sites using HTTPS, it
uses port 443. If you telnet into a device you
usually connect to port 23. Each daemon may

listen on one or more ports. To leave a port
open means that a process on your device is
listening on that port. In the case of the Jeep,
a telnet process in the car was listening on
port 6667 and allowed telnet access over that
port without any authentication.

Most likely this port was left open by
mistake. This is easy to do when we use
complex operating systems like Linux or QNX
(as was used on the Jeep). The OS may leave
open ports that you the designer did not
intend to leave open. So what’s the moral of
the story? One, always check to see if there
are any ports left open unintentionally. Two,
if you most leave a port open, make sure that
access requires authentication.

AUTHENTICATION & PASSWORDS
This leads to the issue of authentication

and passwords. There has to be a very good
reason to design a system that allows the
user named: root (Linux and Unix systems) to
login to a device in the field. It not only gives
the hacker a well-known username, but also
provides more privileges than you probably
want to give to someone remotely. So your
first line of defense, once the moat is crossed,
is the username and password (your wall and
door).

Passwords, if used properly can provide
a significant deterrent to hackers and a
moderate level of security. In the case of
the Jeep, a secret user name and a strong
password would have shut down this attack
completely.

Here is my take on passwords for embedded
devices exposed to the outside world. This
is your next line of defense. Your spikes on
the wall. Most of us designers don’t access
our embedded devices very often when they
are deployed. When we do access them, we
have tools that can allow us to use large and
random type passwords. The next question
is: Should it be a secret password or unique
to each machine or both? The advantage of
a secret password is that it can be random.
However, one based on the MAC or serial
number is algorithmic and can be “guessed.”
There are advantages and disadvantages of
each based on the size of your organization
and other factors which are beyond the scope
of this article.

Once created, how big should the password
be? In my opinion, eight cryptographically
random characters of all of the printable ASCII
characters is more than enough protection.
You can ignore those stories of hackers making
400 billion guesses per second. Your telnet
(shudder) or SSH login should be configured
to take several seconds for a machine to try
one guess. So if your login has that, you can
use one guess per second in your calculation.

CIRCUIT CELLAR • FEBRUARY 2016 #30746
CO

LU
M

NS

If you create an eight cryptographically
random character password, there are 6.09
quadrillion possible passwords to try. And
6.09 quadrillion seconds is a long time (more
than 193 million years).

The moral of the story for Jeep was
to use user secret authentication and use
strong passwords. Even with an open port,
authentication and a password would have
stopped this attack.

REMOTE UPDATES
One of the beauties of the IoT is that

remote software updates cover a multitude
of our sins. With over-the-air updates we
can update every part of our code safely and
reliably. But what about securely? Miller and
Valasek showed that the Jeep design had a
number of major flaws in its software update
procedure. As a result, they were able to
update one of the processors in the Jeep to
allow them to modify devices on the CAN bus.
The Jeep’s line of defense was shattered. The
moat was crossed; the wall breached and the
door was opened to enemy troops. Once they
could do this, they could do almost anything

with the car. So what can we learn from the
update process?

First, the update was neither encrypted
nor signed. With public key encryption, the
hackers would need your secret private key to
encrypt the new program they wish to send to
your device. Without the correct encryption,
the software would reject the update. With
signing, the device will only accept new
software if it is from a trusted source with
some sort of digital signature. At our company
we do both with our software updates.

Once this is done, the software should
allow an update of the public key or the digital
signature. Authentication can escape or leak
out of a company in a flash. You don’t want a
security breach (releasing of your private keys
or passwords) to cause all of your security to
come crashing down like a house of cards.

DATA BUS PROTECTION
Now that the moat was crossed; the wall

breached; the door opened, there was one
last thing that Fiat-Chrysler could have done
to save the castle. With their own program
running in the Jeep, Miller and Valasek’s were
able to create a new packet on the CAN bus to
control the Jeep. However, the data packet was
checked by a very unique algorithm that they
couldn’t figure out. Fiat-Chrysler appeared
to plan for such a security breach because
the checksum of the data packet on the bus
was built with a non-trivial secret algorithm.
Someone was thinking about the possibility
of a hack. However, because the code was not
protected, they could reverse engineer the
code, find the algorithm thus enabling them
to create new packets on the CAN bus. Moral
of the story: encrypt your code. Because they
can pull the chip and extract the code, pick a
chip that allows you to lock the code so that it
cannot be read if the chip is removed.

SERIAL LAYERS
In days of old, when kings were trying to

protect their castles they provided several
layers of protection. If you got over the moat,
there was the wall. If you got over the wall
and opened the door there was the hot oil
poured on your head. To improve security on
our IoT designs we need to have this kind of
serial layers of protection. If they breach the
network and find an open port, they have to
break the authentication. If they breach the
authentication, they do not have a means to
change executables. You get the idea. Next
time we will look at another security debacle
and see what we can learn from it in order to
make our IoT devices more secure. Of course,
only in thin slices.

circuitcellar.com/ccmaterials

RESOURCES
DEFCONConference, “DEF CON
23—Charlie Miller & Chris Va-
lasek—Remote Exploitation of
an Unaltered Passenger Vehi-
cle,” 2015, www.youtube.com/
watch?v=OobLb1McxnI.

ABOUT THE AUTHOR
Bob Japenga has been designing embedded
systems since 1973. In 1988, along with his
best friend, he started MicroTools, which spe-
cializes in creating a variety of real-time em-
bedded systems. With a combined embedded
systems experience base of more than 200
years, they love to tackle impossible problems
together. Bob has been awarded 11 patents in
many areas of embedded systems and motion
control. You can reach him at rjapenga@mi-
crotoolsinc.com.

A. Greenberg, “Hackers Remote-
ly Kill a Jeep on the Highway—With Me
in It,” 2015, www.wired.com/2015/07/
hackers-remotely-kill-jeep-highway/.

C. Miller and C. Valasek, “Remote Exploita-
tion of an Unaltered Passenger Vehicle,” 2015,
http://illmatics.com/Remote%20Car%20Hack-
ing.pdf.

Wired.com, “Hackers Remotely Kill a Jeep on
the Highway—With Me in It,” www.youtube.
com/watch?v=MK0SrxBC1xs.

