
CIRCUIT CELLAR • OCTOBER 2015 #30354
CO

LU
M

NS

In our first installment, we talked about
the various ways we have connected our

embedded systems wirelessly to the Internet.
I covered the various decisions that need
to be made in choosing a carrier for your
embedded system. This month we will look
in detail at how we have connected simple
devices wirelessly to the internet.

Yesterday, we had a new potential client fly
in to see us to discuss their need to create an
Internet of Things (IoT) device for their very
non-electronic company. This company has
been in business for over 50 years making and
innovating extremely low-tech products. Now
they wanted their extremely low-tech product
to be wirelessly connected to the Internet.
They came to us with a prototype developed
by their general manager using an Arduino
and a development kit. This was a man who
had no electrical engineering background.
It was quite impressive. He did not have
any complications sending the data to the
cloud. He did struggle with designing the
sensor to obtain the data he desired. With the
feasibility behind them and after becoming
knowledgeable enough to know what it takes
to join the IoT revolution, they wanted us to

turn it into a product. This shows how easy it
is to take a simple microcontroller, talk to a
complex cell module, and create a device that
will soon join the IoT revolution.

Many of our systems are similar to theirs
and use a very simple microcontroller with
very little memory. Some cell modules offer
a good assortment of options for connecting
to the web. Since some of the module
manufacturers we use require an NDA to
obtain their documentation, we will only talk
about our experience with a Swiss company
called u-blox who freely publishes their
technical documentation on-line. In particular
we will talk about the features of the LISA
C200, which supports CDMA. Other modules
have similar functionality. Figure 1 shows
the basic system architecture that we will be
reviewing this month.

AT COMMAND SET
Most of the module manufacturers provide

an AT command set to configure the module
and initiate communications over the network.
Developed by Dennis Hayes for the 300-baud
Hayes SmartModem (ah, those were the
days!), this simple command and response

EMBEDDED IN THIN SLICES

In the second part of this article series, Bob provided
tips on choosing a carrier for an ‘Net-connected
embedded system. In this article he details how to
connect simple devices wirelessly to the Internet.

By Bob Japenga (US)

The Internet of Things (Part 2)
Connect Wirelessly with a
Microcontroller

circuitcellar.com 55
CO

LU
M

NS

protocol is used on a lot of communications
devices. This is the primary way a small
microcontroller will talk to the cell module.
With the AT command set, the microcontroller
can easily use: FTP, HTTP, UDP, TCP/IP, and
SMS. Let's look briefly at how easy this is to
do.

FILE SYSTEM
All of the networking commands can use

an on-board flash file system on the cell
module. This flash file system has about 1 MB
of disk space available for you to use. There
are rudimentary file system commands to
allow you to read, write, get stats, or delete
(ASCII or binary) files from this flash file
system. Since the files are read over a serial
port it is not like reading from a classic disk
controller. Any read over the serial port could
be corrupted. Thus we always provide some
method of validation that what you have read
or written over the serial port is indeed what
you intended.

FTP
FTP is a file transfer protocol that allows

you to send files unencrypted (including the
password) over the Internet to and from your
system. If you want to send or receive files
over the Internet to or from an FTP server,
you need an ftp client on your device. The cell
module contains that ftp client for you and
provides an AT command interface to that
client.

There are just a few AT commands
required to send a file. The first one defines
the username and password as well as the
URL (either named or IP address). Then you
log in with another AT command. You then
can either obtain one file from the server
(get) or send one file to the server (put).
Each command provides a response in a
file on the file system as to the success or
failure of the operation. Additional commands
may be required to obtain the status of the
network. Once you have completed sending
or receiving files, you can log off with another
AT command.

The LISA C200 supports an FTP client
which supports the FTP commands listed in
Table 1. A number of standard FTP functions
are not supported (like verbose) because they
don’t apply. There are others that would be
nice to have (like the append command or
mput and mget for sending and receiving
multiple files) but are not provided.

In today’s world, FTP should rarely be
used because it is so insecure. We had one
customer many years ago who, when we
offered both FTP and secure FTP (SFTP),
wanted us to delete FTP off his devices
because he did not want his customers to use

it. If you are on a private network, FTP would
work and maintain the security you need.

HTTP
The cell module supports the following

HTTP methods: GET, PUT, POST, HEAD, and
DELETE. The process is quite simple and does
not require a lot of code to implement on your
little microcontroller. You can set up a number
of profiles which contain exactly where the
data is going with a series of AT commands.
Once a profile is set, you can issue another AT
command to initiate the specific HTTP method
associated with that profile. For example, if
you are POSTing to multiple URLs, you can set
up a separate profile for each. The response
from the server comes back as a file on the
local flash file system that you specified. You
can read the file using the file system AT read
command.

As with FTP, it would be ideal if HTTPS
(secure HTTP) was supported. Without
HTTPS, on one project we needed to encrypt
everything that is included in the payload
of the HTTP request and decrypt everything
that comes back. For this application we
used Advanced Encryption Standard (AES)
128, which uses a symmetric private key
algorithm.

AES 128 is a specific instance of an
encryption standard established by the
National Institute of Standards and Technology

TABLE 1
The FTP client supports several ftp
commands

PIC

Serial

u-blox Cell
modem

Cell
wireless

Our network
provider

FIGURE 1
The basic system architecture

u-blox FTP
Command

Windows FTP Description

0 Quit Log out

1 User Log in

2 Delete Delete file from the server

3 Rename Rename file on the server

4 Get Retrieve file from the server

5 Put Send a file to the server

8 Cd Change the working directory

10 Mkdir Make a directory on the server

11 Rmdir Remove directory on the server

13 N/A Obtain stats on a file on the server

14 Dir List the filenames on the server

CIRCUIT CELLAR • OCTOBER 2015 #30356
CO

LU
M

NS

in the United States. It uses a 128-bit key.
The encryption and decryption algorithms
are public knowledge. There are thus 3.4 x
1038 possible keys. If you tried to decrypt
the encrypted data by brute force by trying
a different key a trillion times per second, it
would still take 1,018 years. To date, no one
has found any other way to crack the code
other than brute force.

TCP/IP
On one system, we initially we had a

diagnostic mode where we were sending the
contents of a screen every 10 seconds (the
embedded version of Google Hangout) using
HTTP. When we specified it, we knew that
HTTP and the server could handle the data
throughput, but the cell module just could
not keep up with sending 1k of data every 10
seconds in separate HTTP POSTs. As a result
we implemented the feature using the cell
module’s TCP/IP capability.

The cell module provides AT commands to
create the socket, to open the socket, to send
the data, to close the socket, and to set options
for the socket. When a message comes back
from the socket, an asynchronous response
is provided so your microcontroller does not
need to poll the server for the results.

The cell module can handle up to 6 TCP/
IP sockets open at a time. It also supports
sending and receiving binary or ASCII data.

SMS
A Short Message System (SMS)—or what

we call “texting”—client can be invaluable if
you wish to provide a relatively responsive
system while keeping your data plan costs
low. For example, let’s say that you want to
send up data once per day. Occasionally you
would also like to be able to command the
device to do something and have it respond
within a few seconds. Since the overhead
of an HTTP POST can be greater than 1 KB,
checking the server every minute for some
kind of request would use up more than one
megabyte of data per day from your data
plan. With SMS, the server can just send the
embedded system an unsolicited message
with specific instructions. The text will be
stored in a file and the presence of that file
can be poled (at no cost to your data plan).

A couple of AT commands will set up

your cell modem for sending or receiving
text messages. The microcontroller can
periodically send another AT command to
see the file you specified to receive SMS
messaging with no cost to your data plan
except for the SMS message. If you plan to
use this approach, make sure your data plan
supports SMS.

PROBLEMS WITH THIS
APPROACH

No cell module will implement the full
HTTP or FTP specification. Let's review some
of the more serious shortcomings that we
uncovered.

With the u-blox module, we found that
both the FTP and HTTP implementation did not
support sending multiple files up with a single
command. This actually resulted in causing us
to re-write some of our server code. So if you
are going to be using your microcontroller to
talk to an existing cloud server that may be
expecting multiple files, you are out of luck.

Another shortcoming mentioned is that
the HTTP and FTP responses are slower than
when you connect these cell modems via the
Point to Point Protocol (PPP) (if the cell modem
supports PPP) or Ethernet (some cell modules
simulate an Ethernet connection eliminating
the overhead of PPP).

We also found that we wanted to tweak the
HTTP headers and this was also not allowed
on the u-blox module. We used a serial port
(although all of the cell modems we have
used have USB) on one of the two u-blox
implementations. Even at 115,200 baud, this
is a relatively slow interface for accessing 0.5-
MB files. If your microcontroller can support
USB, then I would recommend that you talk to
the modem via USB.

Finally, we mentioned the lack of HTTPS
and SFTP support previously. As one of our
engineers said, HTTP is being deprecated
across the Internet. Even Google search
engine ratings are lowered if your web site
doesn’t support HTTPS. Not that this applies
to our M2M world, but it does speak to a
growing trend away from HTTP.

ON TO CERTIFICATION
Connecting your device to the Internet has

become much simpler with the design of a
number of the cell modules on the market.
Using simple AT commands over a serial port
or a USB port, you can connect your device to
the Internet and join the Internet of Things
revolution. Next time we will discuss
certification options for your embedded
systems. Certification is a big topic so I can
guarantee that we will approach it in thin
slices.

circuitcellar.com/ccmaterials

ABOUT THE AUTHOR
Bob Japenga has been
des igning embedded
systems since 1973. In
1988, along with his best
friend, he started Micro-
Tools, which specializes
in creating a variety of
real-time embedded sys-
tems. With a combined
embedded systems expe-
rience base of more than
200 years, they love to
tackle impossible prob-
lems together. Bob has
been awarded 11 pat-
ents in many areas of
embedded systems and
motion control. You can
reach him at rjapenga@
microtoolsinc.com.

SOURCES
LISA-C200 CDMA 1xRTT Module
ublox | www.u-blox.com

