
CIRCUIT CELLAR • APRIL 2015 #29750
CO

LU
M

NS

As I started writing this column, I decided
to Google the “Internet of Things” (IoT)

and see what comes up. Simply stated, the IoT
is the world of information connectivity. It is
a world where Things are connected in some
way to the cloud of available information via
the Internet. The first article that came up in
my search was published eight hours earlier
in the day. BBC news reported the availability
of a starter kit produced by both IBM and
a major British manufacturer of an ARM
Cortex-M4 processor.[1] The idea behind this
offering was to provide a platform to spark
people’s imagination about what they can do
with the IoT. Market research sources quoted
in the article predicted that over 5 billion
devices will be “on-line” by the end of 2015.
There will be up to 20 billion by 2020. Our
thin slice of experience says that if the 2015
estimate is correct, the 2020 estimate is very
low. This is because, in our business, the IoT
is exploding.

In the last two years, many of our existing
customers are trying to turn their products
into “always-connected” devices. They want
their devices to be one of the Things in the
world of the IoT. They want to send logs for
diagnostics. They want software updates.
They want to provide real-time interaction
with their devices. They want to provide

their users with more information and more
control. So I think this is going to explode
worldwide.

As I drilled down into the BBC article, I
saw that to connect the starter kit to the
Internet you needed an Ethernet cable, a
router, and an Internet Service Provider (ISP).
Once those were in place you could connect to
IBM’s cloud server. Ethernet cable? That’s not
what I think of when I think of the IoT. I think
of wireless connectivity. I think of toilets that
monitor the water for blood and wirelessly
send me an email that I should make a doctor
appointment. I think of my basement floor
notifying me that it is damp while I am away
on vacation. I’m thinking of my pill bottles at
home letting me know that I already took one
pill at work. We are not going to be connecting
our mousetraps and sprinklers to the Internet
via Ethernet. It will be wireless. We could use
wires. But we won’t.

We have seen four of our customers struggle
with Ethernet or other wired connectivity
over the years with their products. All of
them have gone to a wireless connection. And
by wireless, I am not talking about ZigBee,
Bluetooth, or Wi-Fi. I am referring to a mobile
broadband modem-based (also known as a
cell modem) connectivity to the Internet.

So, this month, I would like to briefly

EMBEDDED IN THIN SLICES

Over the years, Bob has seen a few his customers who had struggled with
wired connectivity switch to mobile broadband modem-based connectivity to
the Internet. This month, he covers four ways that he has connected customers’
products to the Internet via cell modem technology.

By Bob Japenga (US)

The Internet of Things
(Part 1)
Options for Connecting Wirelessly to the Internet

circuitcellar.com 51
CO

LU
M

NS

introduce the four ways that we have
connected our customer’s products to the
Internet using cell modem technology. Each
customer has totally different requirements
and cost sensitivities. There are many other
options. But as always, we will take this in thin
slices. In coming months I will tackle other
issues dealing with the Internet of Things.

EXTERNAL CELL MODEM
Our first foray into the IoT was with a

customer who had a device that went into
homes and small businesses. The device
had to be located in a specific location in the
home. The connection to the Internet was
through Wi-Fi on our device to the customer’s
router (see Figure 1). This did not work well.
We had problems with Wi-Fi drivers. We
had problems with Wi-Fi connectivity in the
home. The router was not close enough to the
device and neither could be moved. We had
customer’s routers that would lock up. We
didn’t have control of the router to keep our
data flowing to the cloud. We had trouble with
customer not maintaining their ISP. Demand
for the product was good but there were
problems with this approach.

The next option was to use Ethernet over
Power (EoP). An Ethernet cable went from our
device to the customer’s router via the power
lines (see Figure 2). This kind of worked.
But we still had issues with the customer’s
routers, the customer’s Internet Service
Provider (ISP), and even the EoP devices
themselves. The EoP devices are complex and
can lock up. Since they are powered when they
are plugged in, there was no way to remotely
reset them. Another problem we had was
that sometimes they didn’t work very well if
the router and the device were on different
legs of the 120-VAC line. How well they work
depended upon how far they were from the
transformer on the pole. We had thousands
of units that needed 24/7 connectivity. We
couldn’t afford having the customer resetting
their router or plugging and unplugging their
EoP.

All of these were relatively low-cost
solutions ($30). But they relied on our
customer. The next step was to put an external
cell modem. We used a Spider SA-G by Enfora.
This was expensive and added the cost of
the monthly data plan. But it was incredibly
versatile and eliminated the need for access
to the customer’s router and ISP. It was pre-
certified by the FCC and the cell network
provider (AT&T and Rogers). It was extremely
easy to interface to. We provided power and
an RS-232 serial interface (we had one spare
in the device). Our internal software had
Linux in it so it supported PPP (see Figure 3).
For our purposes, our application did not

need to change. The infrastructure of PPP and
Linux gave us a seamless connection to the
Internet.

One caveat: Once deployed by the
thousands, the Spider was found to lock up
and not talk to our device. The only solution
was to power cycle the device. A service
call! Ouch. We retrofitted a little USB power
control to overcome this problem. Memo to
self: Always give your designs control of the
power (not soft power) to any moderately
complex device if you want 24/7 operability.
Most complex devices we interface with have
software in them that can and will lock up
sometime. Only a power cycle will recover the
unit.

There are a large number of pre-certified
cell modem devices that are relatively
inexpensive (less than $100). In addition to
the Spider we have used a stand-alone device
from Sierra Wireless. We have used a PCB
module from Multi-Tech. You can add them
to your device and not worry about carrier,
network, or FCC certification. It’s done for
you.

Embedded Linux
device with Wi-Fi

Customer’s
Wi-Fi Router

Customer’s
ISP

Cable
or

phone

Wi-Fi
Ethernet

Customer’s
DSL or
cable

modem

FIGURE 1
Need Caption

Embedded

Linux

device with

Ethernet

Customer’s

Wi-Fi

Router

Customer’s

ISP
Cable

or
phone

AC Power
line

EoP EoP
EthernetEthernetEthernet

Customer’s

DSL or

cable

modem

FIGURE 2
Need Caption

Embedded
Linux

device with
Serial

Our network
providerCell

wireless

Spider cell
modem

RS-232
Serial

FIGURE 3
Need Caption

CIRCUIT CELLAR • JUNE 2015 #29952
CO

LU
M

NS

Internal Cell Modem
This device became so successful that

the customer started looking for ways to cut
costs and make even more money. The cost
of the Spider was an easy target. Why not
put a cell modem chip in our device? They
are much cheaper than the pre-certified
modules or stand-alone units. We chose a
Sierra Wireless SL8081 communicating over
the AT&T network. We used the USB interface
to the chip and used PPP to connect to the
device (see Figure 4). Again, Linux made
the connectivity both flexible and relatively
easy. Sierra had the necessary driver and it
played with all of the versions of the Linux
kernel we tried. We went through FCC and
PTCRB certification. This is a story in and of
itself. The customer cut his recurring cost in
half. Product sales dramatically increased. He
sold more in the first year than he did in the
previous three years.

INTERNAL CELL MODEM
WITHOUT LINUX

Most of the devices we design don’t support
Linux. They didn’t require connectivity to the
Internet when first designed. But now, the
demand to be first on the block with wireless
connectivity in your particular field is putting
immense pressure on manufacturers to make
their device part of the IoT revolution. Or the

competition is already there and you must
play catch up so as to not lose your edge in the
market. We have customers in both positions.

Most of our non-Linux designs use
Microchip Technology PIC microcontrollers. It
is not uncommon for our more complex designs
to use as many as 10 PIC microcontrollers.
But when I have a successful design and
a successful product that is making our
customer a lot of money, I cannot just
redesign the entire processor infrastructure
to give it cell capability. How do I provide
wireless connectivity in this device?

One thing we learned from our experience
with the SL8081 was that it had a complex
operating system inside it. In fact, some
of the Sierra parts let you write your own
applications inside their cell modem chip. You
can create your own Thing to be part of the
IoT using just their chip. But in our case we
couldn’t design our device around the Sierra
chip or actually any other manufacturer’s
cell modem. But we could use some of
the complexity of the chip to simplify our
interface.

We chose a u-blox family of modules
(LISA-C200) to add to one of our designs. It
had both a USB and serial interface (so did the
Sierra SL8081). It provided AT commands that
allowed us to communicate over the Internet
using either HTTP, TCP/IP, or UDP. How cool
is that? With one simple AT command, my
PIC serial interface could connect to a URL,
authenticate, and command an HTTP POST
or HTTP GET command. All with about 10 AT
commands. And the modules are relatively
inexpensive (see Figure 5).

So using our tiny little PIC, we were able
to add a single module with an antenna and
be able to send HTTP, TCP/IP or UDP protocol
data over the Internet. (Refer to Figure 4.
Again, we had a spare serial port.) We send
data logs to our server. We have a real-time
interactive mode where a remote tech support
person can actually see what is on the LCD
graphics screen 12,000 miles away. We can
update software from the cloud for three of
the four PIC processors in the device. All with
just a handful of AT commands. And just for
kicks, the module gives us about a meg of
flash disk storage also accessible through the
AT commands. Wow!

Since the module is embedded into our
device, even though the module was certified,
we were required to get FCC and Network
certification for our device. On this project we
chose Verizon as the network provider. As a
technology we chose to use 3G instead of 4G
for cost reasons and the fact that the units do
not have a 10-year life.

MIFI SOLUTION
We have one customer who has a very

expensive device that has Wi-Fi built in. It

circuitcellar.com/ccmaterials

ABOUT THE AUTHOR
Bob Japenga has been
designing embedded
systems since 1973. In
1988, along with his best
friend, he started Micro-
Tools, which specializes
in creating a variety of
real-time embedded sys-
tems. With a combined
embedded systems ex-
perience base of more
than 200 years, they
love to tackle impossible
problems together. Bob
has been awarded 11
patents in many areas of
embedded systems and
motion control. You can
reach him at rjapenga@
microtoolsinc.com.

REFERENCE
[1] “Internet of Things Starter Kit Unveiled
by ARM and IBM,” BBC, www.bbc.com/news/
technology-31584546.

SOURCES
SL8081 Module
Sierra Wireless | www.sierrawireless.com

LISA-C200 Modules
u-blox | www.u-blox.com

USB

Our network
provider

Cell
wireless

Sierra cell
modem

ARM
Linux

FIGURE 4
Need Caption

Serial

Our network
provider

Cell
wirelessU-blox Cell

modem

PIC

FIGURE 5
Need Caption

circuitcellar.com 53
CO

LU
M

NS

is a Linux-based system with both Wi-Fi and
Ethernet connectivity. In most cases, the user
has three or more of these units. The original
idea was that this device would be used in
a home or office. The devices would connect
to a Wi-Fi router in that office for Internet
connectivity. Even before we deployed this,
we ran into snags getting onto the Wi-Fi
networks or onto the Ethernet networks in
the homes and medical institutions. We were
experiencing déjà vu all over again. Our
device became dependent upon the users’
Wi-Fi router, modem, and ISP.

In this case, the mobile Wi-Fi hotspot
(like the MiFi marketed by Novatel) solved
the problem. The home or medical institution
would have one mobile Wi-Fi device and
multiple units would connect to the Internet
wirelessly. Since the devices are going to
be deployed in both the US and Canada,
the network provider needed to be chosen
to support that. But mobile Wi-Fi hot spots
are available from a wide variety of network
providers. And they are relatively inexpensive
compared to the cost of our device.

Basically, this solution (see Figure 6)
replaces the need to interface with the home
or office’s router or ISP and sets your product
free from any problems this may bring. And

in this special case of multiple units, we don’t
need to have separate cell modems (separate
data plans, etc.) in each device (which take
significantly more power than Wi-Fi).

CONCLUSION
I predict that the number of devices

interconnected on the Internet will grow more
than four fold in the next four years. This
month we looked at some of the ways your
devices can become one of those Things
connected to the Internet. Next time, we will
look at more of the issues required for making
one of your designs a member of the IoT
community

Embedded
Linux

device with
Wi-Fi

Embedded
Linux

device with
Wi-Fi

Embedded
Linux

device with
Wi-Fi

Cell
wireless

Our network
provider

Wi-Fi

Wi-Fi

Wi-Fi

Our mobile
Wi-Fi Hotspot

FIGURE 4
Need Caption

