
circuitcellar.com 43
CO

LU
M

NS
CIRCUIT CELLAR • OCTOBER 2014 #29142

CO
LU

M
NS

Fall is in the air and it is the time of the year
I love best—especially in New England.

Contrast that with building a new version of
embedded Linux for a project. As a manager,
I cringe every time one of my teammates tells
me that they need to build (for the first time)
a new version of Linux.

There were times when we designed a
board from a reference design and built
everything from a ready-made distribution
from the chip maker. That was easy. A
couple of quick cookbook-style steps here
and there. Perhaps configuring a new flash
memory chip or RAM chip. Compile. Build.
Done. Simple. But then, at some point later,
we discovered that our version of Linux didn’t
have the driver we needed for some piece of
hardware or it didn’t support some software
functionality. This recently happened to one
of our customers who delayed implementing
a software function until late in the project.
When we were asked to implement it, they
already had special drivers that only worked
with their version of Linux to interface to
their proprietary hardware. But they needed
a streaming video USB gadget that wasn’t in
their version of Linux. We had a dilemma. We
had to either bring all of the proprietary code
over to a new version of Linux or back-port
the code from a later version of Linux into
the older version. It was time for the antacid.

There was no easy answer. We knew cost
overrun and schedule slips were imminent.

This can happen, and it is painful.
Very often, the chip manufacturers don’t
mainstream their changes (i.e., put them
into a stable release at Kernel.org). That can
be understandable in the fast-paced world
of hardware development. If asked, they
will say that they haven’t done it yet. If you
have to bring that code into a new version of
the kernel, you will need to bring all of their
changes that they made to get the reference
design running into the new kernel. One time
we used a reference design and very late in
the life cycle discovered a bug in the C library.
The manufacturer not only didn’t mainstream
their changes, they couldn’t find the source
code they used for the c library. What a
nightmare.

These days we are smarter and things are a
little easier. Thanks in part to OpenEmbedded,
Yocto, and Ångström. This month I’ll cover
each of these. We have used all three. There
are other options, like Linux From Scratch,
but since we are only examining it in thin
slices, I am only going to cover the slices we
have actually used.

OPENEMBEDDED
In Part 2 of this article series, we discussed

the concept of a Linux distribution. These are

things like Ubunto, Fedora or, in the embedded
world, Ångström. A distribution is a complete
set of tools, the kernel, the packages, and
the build instructions to create a version of
Linux. OpenEmbedded provides you the
framework to enable you to create your own
distribution. From the name, you will gather
that it specializes in creating an embedded
version of Linux, which is very different than
starting with a distribution like Ubunto.

The problem for us as designers is how to
create a distribution for our project. Over the
years, we have seen a number of attempts to
help us. The OpenEmbedded project was a big
step forward in this process. I won’t bore you
with the history of how this evolved, but the
major contribution that the OpenEmbedded
organization provided to our community was
the development of BitBake and the structure
for metadata used to define your system.
Let’s look briefly at each of these.

BITBAKE
In the past, developers have used makefiles

to build the Linux kernel and the associated
applications. The kernel was configured as
discussed in my June 2014 article, in which
I described using script files to tie the whole
process together. We used this method on
many projects early in our deployment of
Linux. Once in place, it worked okay. The
problem came when we had to make changes
to the version—of either the kernel or its
associated libraries or the applications.

Another problem had to do with the tool
chain. The tool chain needs to be tied to any
development life cycle or when you start
a new project. Only once have we used the
same build process from one Linux project to
another. And that was because the hardware
was identical. This is a significant problem.
The OpenEmbedded organization was formed
to help us with that. What OpenEmbedded
brought to the table was a new tool and
specified a new language to define the
architecture. That tool was BitBake.

Think of BitBake as make on steroids.
The inputs to BitBake are called “Recipes.”
BitBake takes recipes and metadata to
create a complete Linux distribution. It is
not necessary to have a build script (i.e.,
write code) to create most distributions. The
language is powerful enough to do everything
you need. And if it has shortcomings (they all
do), it does allow you to use Python to create
more complex operations. It is flexible enough
to handle multiple hardware architectures
and helps you to manage and create multiple
releases for those targets.

METADATA
So what is this metadata that BitBake

uses? Think about what you need to know
to create the Linux kernel. You need a
configuration file. You need to know where
your tool chain is to compile and build the
kernel. You need to know where the source
files are located. Ideally, they should be
available on the Internet. You need to know
complier options. And you need to know a
series of dependencies (i.e., if you change
this file, other files need to change). Building
a package has all of the same requirements.
All of this gets wrapped up in what is called
the metadata.

RECIPES
Okay, you are saying: “This is sounding a

little cheesy.” Baking. Recipes. What are these
recipes? If BitBake is make on steroids, recipes
are makefiles on steroids. A given recipe tells
BitBake exactly the who, what, where, and
how for building a particular package. Who
is the name of the package. What is the type
of package. Where is the location. And then
How to build it. The end result is a file system
image and a kernel image that you can put on
your target system.

YOCTO
Wow! That sounds great. But what’s

lacking? Why did Yocto need to come along?
Basically, Yocto picks up where OpenEmbedded
left off. More heavily funded, it accomplishes
all of the same goals that OpenEmbedded set
out to attain. But Yocto relies heavily on two
things from OpenEmbedded: BitBake and the
metadata. OpenEmbedded remains a separate
organization from Yocto and is concentrating
on making BitBake better and providing
metadata for a host of architectures. Yocto
is concentrating more on the tools and the
board support packages (BSP) for a wide
variety of architectures and processor boards.
For example, OpenEmbedded maintains the
metadata for something like the BeagleBoard
and the Raspberry Pi boards, but the Yocto
project is the place to get the BSP.

Another way to look at Yocto is to think
of it as a place where silicon providers like
Atmel, Texas Instruments, and Freescale can
create a common framework for the release
of Linux for their new processor or core. For
us as users, that is a win-win situation.

Another benefit for developers, is that if,
for example, we choose to use a commercially
supported release of Linux (Bob-Are words
missing in sentence?). Perhaps we need to
meet the FDA requirements for Software
of Unknown Provence (or Pedigree) (SOUP).
Yocto helps because all of the major vendors
are members of Yocto. So, if you do all of
your development on a particular Yocto
version and then need the kind of support

EMBEDDED IN THIN SLICES

Build Your Linux System
This is the final installment in a multipart
article series dealing with configuring Linux for
embedded systems. In this article we will look
at some of the ways available to you to build the
embedded Linux system you need.

By Bob Japenga (US)

Linux System
Configuration (Part 3)

CIRCUIT CELLAR • OCTOBER 2014 #29144
CO

LU
M

NS

that these commercial packages provide,
you can seamlessly switch. This is not
true if you use just any old distribution.
We found this on one project when we
evaluated going to a commercially supported
version of Linux from Wind River. We were
evaluating this because of the processes and
documentation that they provided for FDA
approval of a medical product. Going with the
commercially supported release was going
to save us considerable time and money
for documentation. The problem was that
we used a version of the kernel from Texas
Instruments that came with our development
kit and that version was not supported by
Yocto. Creating a new distribution for the
closest version supported by Wind River
would probably cost more than the benefit
received by having the documentation and
support provided by Wind River.

ÅNGSTRÖM
If all of these names haven’t gotten your

head spinning, let’s just talk about one more.
Ångström heavily relies on OpenEmbedded
and Yocto to create a distribution specifically
targeted for embedded systems. It is highly
scalable. It can run on a device with as little
as 4 MB up or on a system with several
terabytes. But of course the question is,
what can it do with only 4 MB? There are a
host of off-the-shelf boards that it supports

including the popular BeagleBoard and Beagle
Bone open source hardware platforms as well
as the Raspberry Pi. So, if you are using a
reference design or an SBC that is supported
by Ångström, you will probably have the
most tools and flexibility for maintaining your
design throughout its lifecycle.

STICK WITH LINUX
Where are we to begin as system

designers? We are offered a plethora of
choices. Let’s consider them in order of
decreasing complexity resulting in decreased
cost and time: we can certainly build Linux
and the subsequent applications from Kernel.
org; we can use a tool like “Build Linux from
Scratch”; we can use a board-support package
provided by a hardware vendor that is not part
of Open Embedded, or from one that is part
of Open Embedded; we can build our design
using a project already supported by Yocto;
or we can start with an existing distribution
(Ångström, or Ubunto, or Debian) and go on
from there. Our experience is that the cost
savings across the life cycle are significantly
larger the later we go in that list of options.
A few years back, hardware venders of x86
SBCs could tout simplicity by providing an SD
card or Compact flash with Ubunto or Debian
on it. Everything was there for you. You could
concentrate on your killer application.

Today, with Ångström, you can have
that for a wide range of processors and for
specifically an embedded system. If you
are rolling your own hardware based on
a reference design, make sure the silicon
provider is using OpenEmbedded and ideally
has created a Yocto project.

We have come a long way in developing
easier ways to create, modify, and maintain
embedded Linux systems. We still have a long
way to go to achieve the full potential that
Linux offers. Sometimes, the very issues I
covered in this article make me want to stop
using Linux. But then where else would I go?
Hopefully, this article series has helped you
better understand how to configure the
kernel, select and build the applications, and
finally put together a distribution for your
next embedded Linux project. Of course, only
in thin slices.

circuitcellar.com/ccmaterials

ABOUT THE AUTHOR
Bob Japenga has been designing embedded
systems since 1973. In 1988, along with his
best friend, he started MicroTools, which spe-
cializes in creating a variety of real-time em-
bedded systems. With a combined embedded
systems experience base of more than 200
years, they love to tackle impossible problems
together. Bob has been awarded 11 patents in
many areas of embedded systems and motion
control. You can reach him at rjapenga@mi-
crotoolsinc.com.

RESOURCES
Ångström, www.angstrom-distribution.org
Fedora, https://fedoraproject.org
Ubuntu, www.ubuntu.com
Open Embedded, www.openembedded.org
Linux from Scratch, www.linuxfromscratch.org
Wind River Linux, www.windriver.com/prod-
ucts/linux.html
Yocto, www.yoctoproject.org
BeagleBone, http://beagleboard.org/bone
BeagleBoard, http://beagleboard.org
Raspberry Pi, www.raspberrypi.org

