
CIRCUIT CELLAR • AUGUST 2014 #28958
CO

LU
M

NS

Let’s start with some definitions. In
Part 1 of this article series I talked

about configuring the kernel. The kernel is
the nerve center of a Linux system (i.e., the

OS). But the OS needs applications to do real
work. You need web servers, user interfaces,
I/O processing, and other logic encapsulated
in applications to do the actual work.

After you configure and build the kernel,
applications need to be selected and then built
for your particular kernel and processor. Linux
provides many open-source applications to
help fulfill your design. As a system designer,
you need to choose which applications you
want to go into your embedded system. Of
course, if your processor is infinitely fast and
has an unlimited amount of RAM and flash
memory, you can just skip this article. Others
may need to learn more.

Applications are put together in a
“package.” Packages are assembled in what
is called a “distribution.” You may have heard
of Ubuntu or Fedora. These are collections
of packages (one or more applications) and
a kernel put together as one unit called a
Linux distribution. For example, my company
recently started a project for a customer
and wanted to know what they were using
for Linux (i.e., tools being used, kernel
version, and applications running). When the
customer told us they were using an Ångström
distribution, we knew what they had (more on
Ångström next time). In this article, I want to

discuss the kinds of packages you may want
to include in your system.

WHAT ARE YOUR OPTIONS?
One of the reasons my company uses

Linux is because of the vast array of packages
available. Several times our customers have
asked: “Can you …?” You can fill in the blank.
And many times, because of the packages
available, we can say yes.

One example involved creating a virtual
display. One of our customer’s customers
wanted to control our embedded device from
a PC as if they were in front of the device’s
touchscreen on the device. Voila. An open-
source package has already been designed to
do just that.

Let’s look at some of the options you
have as a system designer in open-source
packages for embedded Linux.

BUSYBOX: THE SWISS ARMY
KNIFE OF PACKAGES

BusyBox is one package that is used in a
lot of embedded systems that are concerned
about resources. BusyBox puts a lot of (more
than 250) tiny UNIX/Linux applications into
one small executable. For example, typical
networking applications such as File Transfer
Protocol (FTP) and Telnet are included
in BusyBox. Common file manipulation
applications such as “cp” (copy a file),
“cmp” (compare), and “more” are included.

Linux System
Configuration (Part 2)

EMBEDDED IN THIN SLICES

Linux Application Design
The Linux system can be configured in many ways.
This article examines some options, including
BusyBox, web servers and server-side support,
mail servers, time server interfaces,
secure networking, graphics libraries,
and browsers.

By Bob Japenga (US)

circuitcellar.com 59
CO

LU
M

NS

BusyBox can be configured to delete some
of these applications if space or simplicity
is appropriate. We reduced BusyBox to just
a handful of commands on one tiny Linux
system. With some distributions you can
configure BusyBox to build some “real” UNIX/
Linux applications and delete them from
BusyBox.

There is one thing you should be aware
concerning BusyBox. BusyBox commands are
not always exactly the same as the standard
UNIX/Linux documentation. Generally they
eliminate certain features rather than
changing the core operation. The first time I
used BusyBox on a project, I found that many
things I wanted to do were not present. Some
just required recompiling and rebuilding
BusyBox. Sometimes they were not present
at all. So beware.

WEBSERVERS AND SERVER-SIDE
SUPPORT

Since you are using Linux, you most likely
have a networked system. If you want to be
able to browse to the device (we usually use
this for configuring the system) or you want
to respond to HTTP queries from a host, you
will need a web server. You system uses a
web server to deliver web content via the
Internet. As a system designer you have a lot
of options.

Apache—Apache is the grandfather of all
Linux web servers. Approximately 60% of
all web content on the Internet is handled
by Apache servers. Apache is a completely
full-featured web server with more options
than I could describe in several articles. With
this functionality comes significant resource
usage. Some estimates recommend 400 MB
of RAM and hundreds of megabytes of disk
space. It is so configurable, hard statistics
are not available about how much memory
Apache uses. We used Apache once on an
embedded system that had a gargantuan
amount of memory.

Lighttpd—We have used Lighttpd on many
of our embedded designs. Requiring less
than a tenth of the resources of Apache, it
supports almost all of the features we have
ever needed to design web-based embedded
systems.

Server-side languages—You need some
kind of server-side support language to serve
most modern webpages. If your device is going
to serve anything but a simple webpage, you
should include one or more of the following
languages: PHP, Perl, Python, Ruby, Java, or
Tcl. These languages are resource hogs on
very small embedded systems.

On one project, using PHP would have
taken 8 MB of flash memory. On this system,
which had 16 MB of RAM and 32 MB of flash

memory, we served webpages with a C
language program. When we started the
project I was warned that serving webpages
in C was going to be difficult. But we just
didn’t have the flash memory resources. Now
I can truly say that the server-side software
was ugly. Most of you won’t be limited like we
were. However, if you are somewhat limited
you should choose one language you will use
to serve webpages.

MAIL SERVERS
We did a Linux project replacing an

embedded 8088 with a fax modem on an
industrial control. Whenever the system
needed to sound an alert, it would fax the
details to everyone on the list. We convinced
our customer that e-mailing would be a much
better way to go. Adding e-mail support to
Linux is trivial. As with setting up a web
server, with mail servers you can go with
the standard full-featured mail server (called
the SMTP server) or there are various small-
footprint mail servers.

TIME SERVER INTERFACE
One of the common problems we face

when we create “headless” designs (i.e.,
when there is no user interface) is how to set
the time and date. There is a Linux package
that solves your problem. The Network
Time Protocol (NTP) enables your device to
continuously connect to a time server and
keep your time and date current. It works
much like what you have on a Windows PC.

SECURE NETWORKING
When we started designing networked

systems, security was not at the top of our
priority list. Now, customers no longer want
Telnet (an unsecure way of connecting to your
device). They demand Secure Shell (SSH),
which is just Telnet over a secure network. By
incorporating the OpenSSL package (which we
are all familiar with because of the HeartBleed
virus), you can add a secure layer to all of your
network communications. Generally, adding
OpenSSL is not enough since you will have
to provide some mechanism to handle the
encryption keys (encapsulated in certificates).
Again, the Linux open-source community will
provide that for you.

GRAPHICS LIBRARIES
Many Linux systems that we build

have some sort of GUI. With any graphical
interface, you need the graphical libraries
to easily design a snazzy user interface. The
forerunner of Linux graphics libraries is the
X.Org Foundation’s X Window System. The
first UNIX system I ever worked with included
this library. It is large and sometimes

CIRCUIT CELLAR • AUGUST 2014 #28960
CO

LU
M

NS

painfully slow. GTK+ is a faster and
smaller-footprint option. We have used
it on several systems and were well
satisfied. QT is a smaller and faster
library, but my company does not have
any experience using it.

We have done a few designs
where the user interface is a browser
interface. This requires the system
to have a browser and a web server.
Instead of designing widgets and
gadgets from scratch, draw upon the
vast number of webpage designs in the
world and point your browser to the
device’s link local address.

BROWSERS
Whether you browse to your own

web server (as described earlier) or
enable your user to browse externally
(we have only done this on one
embedded system), you need to choose
at least one browser package. The
common options we have used include
Chromium (why it is not called Chrome
is an interesting story for another day),
Firefox, and Midori. Chromium is uses
a lot of resources, but it is well known.
We found Firefox to be unstable on the
one platform on which we ran it. Midori
is a fast and lightweight option. It is
part of the Raspberry Pi distribution.
We have limited experience using it.

There is a commercial browser
specifically designed for small

embedded platforms: NetFront and NetFront
NX. It is said to be “extremely” optimized
for embedded platforms. Nintendo 3DS
and Playstation 3 Internet browsers use
this platform. Unfortunately, I do not have
licensing information or any experience using
it.

MISCELLANEOUS PACKAGES
There are a wide range of other packages

to suit many different needs. cURL is a
powerful command-line tool for sending all
kinds of data over the Internet over a variety
of protocols. We have used cURL in a several
settings where we wanted to communicate
over the Internet via a shell script rather than
programmatically.

How can I discuss packages without talking
about package managers? A mechanism for
managing the versions of your packages
is built into the fabric of Linux. It seems
as if each distribution has its own package
manager with its own nuances. Simply stated,
it is a powerful way to safely and automatically
update your applications and packages in the
field. That said, we have never used a package
manager to control the updating of our
proprietary code on an embedded system.
It seems as if our customer’s requirements
for security, the website, version control,
or something else prevents us from using a
package manager in our embedded system.

Perhaps you have successfully used a
package manager on an embedded system.
E-mail me what you did and how you did it.
We have tried a few times to use them to
prevent us from reinventing the wheel for
software updates, but we have always been
stymied.

Another package we use on some of
our systems is a database programming
language called SQL. If your design requires a
distributed and relational database, you may
want to look into SQL. Several different SQL
packages are available. We have used MySQL,
which is a full-featured implementation and
SQLite, which is a somewhat “lite” version
of MySQL. By adding this package to your
toolkit you add all of the power of a managed
relational database.

KNOW YOUR OPTIONS
Configuring Linux involves configuring and

building the kernel, selecting the packages
you want installed in your system, and then
building them into a file system image. This
article provided you with information about
some of your options (in thin slices of course).
Part 3 of this article series will discuss the
options you have for building this vast array
into a workable Linux system.

circuitcellar.com/ccmaterials

RESOURCES
The Apache Software Founda-
tion, www.apache.org.

The Ångström Distribution,
www.angstrom-distribution.
org.

BusyBox, www.busybox.net.

cURL, http://curl.haxx.se.

The Fedora Project, https://
fedoraproject.org.

The GTK+ Project, www.gtk.
org.

ABOUT THE AUTHOR
B o b J a p e n g a h a s b e e n
d e s i g n i n g e m b e d d e d
systems since 1973. In 1988,
along with his best friend, he
started MicroTools, which spe-
cializes in creating a variety of
real-time embedded systems.
With a combined embedded
systems experience base of
more than 200 years, they love
to tackle impossible problems
together. Bob has been award-
ed 11 patents in many areas of
embedded systems and motion
control. You can reach him at
rjapenga@microtoolsinc.com.

Lighttpd, www.lighttpd.net.

Midori, www.midori-browser.org.

MySQL, www.mysql.com.

The Network Time Protocol (NTP), www.ntp.
org.

The OpenSSL Project, www.openssl.org.

QT Project, http://qt-project.org.

SQLite, www.sqlite.org.

Ubuntu, www.ubuntu.com.

Wikipedia, “Heartbleed.”

X.Org Foundation, www.x.org/wiki.

SOURCE
NetFront
ACCESS Co., Ltd. | www.access-company.com

