
CIRCUIT CELLAR • JUNE 2014 #28752
CO

LU
M

NS

One of the embedded systems my company 
designed is being deployed in ways in 

which it was not designed. I am sure that 
never happens to you. In fact, we specifically 
told customers not to install these systems in 
this particular way. Since you can never tell 
a customer he is wrong by not reading your 
instructions, nor can you ask him to re-install 
thousands of units, we were looking into ways 
we could survive this installation problem 
through software changes.

We determined that if we could come up 
with a way to reduce the overall power the 
unit draws, we may be able to mitigate the 
problem. Our customer’s Chief Technical 
Officer asked if we could put the processor 
in Sleep mode to reduce power draw during 
idle times. I knew this could be done with 
the hardware, but I did not know if our Linux 
kernel was configured to do so.

Linux kernels have hundreds of parameters 
you can configure for your specific application. 
Since Sleep mode is mostly used on battery-
powered units, we had not configured the 
kernel to support Sleep mode. Although we 
can update the kernel remotely, it has a high 
cost relative to the terms of the cellular data 
plan. (We are using a data plan where we 
can use 1 MB of data per month. The kernel 
update would be about 3 MB.) So because 
we didn’t plan ahead enough early on, this 
solution was not as viable.

Hopefully with this article under your belt, 

you can be forewarned to think ahead since 
many of the options have very little cost in 
terms of memory and real-time usage. This 
article will examine the kinds of features that 
can be configured to help you think about 
these things during your system design. At 
a minimum, it is important for you to know 
what features you have configured if you are 
using an off-the-shelf Linux kernel or a Linux 
kernel from a reference design. Of course, as 
always, we will be looking at this only in thin 
slices. 

WHY CONFIGURE THE LINUX 
KERNEL?

Certainly if you are designing a board 
from scratch you will need to know how to 
configure and build the Linux kernel. However, 
most of us don’t build a system from scratch. 
If we are building our own board, we still use 
some sort of reference design provided by the 
microprocessor manufacturer. We have found 
these to be awesome. And the reference 
design usually comes with a prebuilt kernel 
and file system.

Even if you use a reference design, you 
almost always change something. You use 
different memory chips, physical layers 
(PHY), or real-time clocks (RTCs). In those 
cases, you will need to configure the kernel 
to add support for these hardware devices. 
If you are fortunate enough to use the same 
hardware, the reference design’s kernel may 

Linux System
Configuration (Part 1)

EMBEDDED IN THIN SLICES

The Linux Kernel
This article series discusses configuring 
Linux for embedded systems. While the 
series won’t include design details, it will 
provide information about the available 
possibilities. This article focuses on Linux 
kernel configuration. 

By Bob Japenga (US)



circuitcellar.com 53
CO

LU
M

NS

have features you don’t need and you are 
trying to reduce the memory footprint (which, 
by the way, is needed not just because of your 
on-board memory, but because of the over-
the-air costs of updating, as I mentioned in 
the introduction). Or, the reference design’s 
kernel may not have all of the software 
features that you want. 

Let’s say for example you are using an off-
the-shelf Linux board (e.g., a Raspberry Pi or 
BeagleBoard.org’s BeagleBone). It comes with 
everything you need, right? Not necessarily. 
As with the reference design, it may use too 
many resources and you want to trim it, or 
it may not have some features you want. So, 
whether you are using a reference design or 
an off-the-shelf SBC, you need to be able to 
configure the kernel.

HOW IS THE KERNEL 
CONFIGURED?

Many things about the Linux kernel 
can be tweaked in real time. (This is the 
subject of a future article series.) However, 
many things (e.g., handling Sleep mode and 
support for new hardware) require a separate 
compilation and kernel build. The Linux kernel 
is written in the C programming language, 
which supports code that can be conditionally 
compiled into the software through what is 
called a preprocessor DEFINE.

A DEFINE is associated with each 
configurable feature. Configuring the kernel 
involves selecting the features you want with 

the associated DEFINE, recompiling, and 
rebuilding the kernel.

CONFIGURING THE LINUX 
KERNEL

Okay, I said I wasn’t going to tell you 
how to configure the Linux kernel, but 
here is a thin slice: One file contains all the 
DEFINES. Certainly, one could edit that file. 
But the classic way is to invoke menuconfig. 
Generally you would invoke this by specifying 
the specific architecture with the command	
make ARCH=arm menuconfig.

There are other ways to configure the 
kernel—such as xconfig (QT based), gconfig 
(GTK+ based), and nconfig (ncurses based–
that are graphical and purport to be a little 
more user-friendly. We have not found 
anything unfriendly with using the classical 
method. And in fact, since it is terminal-
based, it works well when we remotely log 
into the device.

Photo 1 shows the opening screen for 
one of our configurations. The options are 
reasonably well grouped to enable you to 
navigate the menus. Most importantly, the 
mutual dependencies of the DEFINEs are built 
into the tool. Thus if you choose a feature that 
requires another to be enabled, that feature 
will also automatically be selected.

In addition to the out-of-the-box version, 
you can easily tailor all the configuration 
tools if you are adding your own drivers or 
drivers you obtain from a chip supplier. This 

PHOTO 1
This opening screen includes well-
grouped options for easy menu 
navigation.



CIRCUIT CELLAR • JUNE 2014 #28754
CO

LU
M

NS

means you can create your own menus and 
help system unique for your system. It is so 
simple; I will leave it to you to find out how 
to do this. The structure is defined as Kconfig, 
for kernel configuration (see Resources for 
more information).

HARDWARE CONFIGURATIONS 
As I have already mentioned, one of the 

chief reasons for configuring the kernel is to 
select the specific hardware for which you 
are building the kernel. It starts with the 
processor and or system type. For example, 
ARM’s ARM9 family of processors, which we 
heavily use, has a dizzying array of options.

menuconfig walks you through those 
options. You can always learn more about an 
option by selecting the context-sensitive help 
available for each option. Specific features 
(e.g., your chipset’s power management) can 
be configured. For example, the different level 
of caching on the ARM processor: I-cache 
(instruction) and D-cache (data). Also you 
can choose the kind of frequency throttling 
you want to take place to conserve power. 
(Check out how often the clock frequency is 
changed on your smartphone some time. The 
algorithms to conserve power are amazing.)

Once you have specified the processor and 
system type, you need to select the specific 
hardware drivers you want loaded. Before 
you do that, you should decide if you want the 
ability to maintain “loadable module support.” 
If you don’t choose this option, all drivers will 
be part of the kernel image.

Although it may seem better to keep things 
fixed in your embedded system, enabling 
modules to be loadable lets you update a 
driver without updating the entire kernel. We 
like to make every driver possible loadable to 

enable us to easily replace one small file rather 
than require a change to the kernel image. 
Loadable driver modules are stored on the 
file system, whereas embedded drivers are 
stored as part of the kernel image. Loadable 
modules can help you greatly enhance your 
system’s features without expanding the 
kernel partition. 

menuconfig enables you to select from an 
array of memory devices, real-time clocks, 
Ethernet PHYs, keyboards, mice, joysticks, 
watchdog timers, I/O expanders, ADCs, 
DACs, sound modules, I2C and SPI EEPROMs, 
802.11 wireless options, Bluetooth options, 
touchscreen drivers, display drivers, and 
many more. Once selected, some drivers can 
configure certain features. For example, the 
serial driver may support direct memory 
access (DMA). This can enable you to transport 
data at much higher than 115.2 kbps.

When we are designing a board and 
need to add new hardware, we start in 
menuconfig to determine what hardware is 
already supported. Most of our projects don’t 
give us the leisure to develop a driver from 
scratch. Encourage your hardware designer 
to become familiar with the options available 
from menuconfig and you will save a lot of 
future grief.

SOFTWARE CONFIGURATIONS
Not only can you configure the Linux kernel 

with respect to the hardware, you can choose 
what software features you want to include. 
One of the most important features is the file 
systems that you want to support.

As I discussed in previous articles, Linux 
supports several flash file systems. You need 
to select one or more you think you will be 
supporting, including the network file system 
(NFS).

Security is an ever-increasing concern and 
Linux is far and away the most powerful tool 
we have in our arsenal to provide the kind 
of security our customers demand. Security 
algorithms are like wading in alphabet soup: 
ECB, LRW, PCBC, XTS, HMAC, and XCBC 
cyrotographic schemes are available. Various 
algorithms are also available for cryptography 
including: SHA, MD5, Blowfish, RIPEMD, AES 
cipher, ARC cipher, DES, triple DES, and many 
others. Do you need all of these? Most likely 
not, but they don’t take a lot of resources, and 
you never know when you will need what part 
of the alphabet!

Certain system features can be configured 
including POSIX message queues, System 
V IPC (see my article, “Concurrency in 
Embedded Systems Part 6: POSIX FIFOs and 
Message Queues,” Circuit Cellar 273, 2013), 
and support for triggering timers, signals, 
and events from file activity. Most embedded 

circuitcellar.com/ccmaterials

RESOURCES
3C Portal, “Applications and 
Tools for Android,” www.3c71.
com.

ARM,Ltd., “ARM Infocenter,” 
http://infocenter.arm.com.

B. Japenga, “Concurrency in 
Embedded Systems Part 6: 
POSIX FIFOs and Message 

Queues,” Circuit Cellar 273, 2013.

The Linux Kernel, “Documentation Extract-
ed from the Linux Kernel and Mirrored on the 
Web Where Google Can Find It,” www.kernel.
org/doc.

Real-Time Embedded, “Working with Kconfig,” 
www.rt-embedded.com.

SourceForge, “xconfig,” http://sourceforge.net.
Wikipedia, “List of Algorithms.”

SOURCES
ARM9 Family of microprocessors
ARM, Ltd. | www.armcom

BeagleBone Linux computer
BeagleBoard.org | www.beagleboard.org



circuitcellar.com 55
CO

LU
M

NS

ABOUT THE AUTHOR
Bob Japenga has been designing embedded sys-
tems since 1973. In 1988, along with his best 
friend, he started MicroTools, which specializ-
es in creating a variety of real-time embedded 
systems. With a combined embedded systems 
experience base of more than 200 years, they 
love to tackle impossible problems together. Bob 
has been awarded 11 patents in many areas of 
embedded systems and motion control. You can 
reach him at rjapenga@microtoolsinc.com.

systems did not previously need to support 
plug-in modules. However, with the advent of 
USB ports, all of our embedded systems with 
USB ports permit hot loading of devices via 
USB. Point-to-Point Protocol (PPP) is another 
helpful option we use with all of our modems 
(both cell modems and dial-up modems as a 
configuration item).

Support for IPv6 is also a kernel option you 
will want to provide even if you are currently 
using IPv4. We are quickly running out of 
32-bit IP addresses, so IPv6 will be required 
before we know it. 

A very important feature for us in designing 
real-time systems is the preemption models 
available. Through menuconfig you can choose 
to use various forms of preemption. Using the 
full real-time control, we can write user space 
threads with guaranteed determinacy in the 
sub-millisecond range. 

Last but not least, the kernel enables you 
to add a significant number of debugging 
features. In most cases these will only be 
used during development because of their 
overhead in RAM and real time. However, 
through configuration, you can enable kernel 
core dump tracing, stack dumps, and kernel-
level printf support. Serial analyzers for SPI, 
I2C, USB, and RS-232 are available, if enabled. 

We often instrument portions of the kernel 
during debug and then turn these features off 
prior to release for verification.

KNOW YOUR CONFIGURATION
Even if you are using a reference design or 

an off-the-shelf Raspberry Pi, as a system 
designer, you should be aware of what extra 
overhead is being configured into your kernel 
and know what features are missing that  
may be needed to develop impressive 
systems. Hopefully this article gave you a thin 
slice of how to do this. 


