
CIRCUIT CELLAR • JUNE 2018 #33550
CO

LU
M

NS

A couple of years ago, I asked
if you, the reader, would be
interested in knowing more
about the specific security

features of some of the new offerings on
the market. In my last article, I mentioned
a specific family of microprocessor units
(MPU) that we have used at our company.
The entire article concentrated on one of the
security features the MPU contained (features
preventing specific side channel attacks) that
I was not familiar with. This month I want to
step back and look at each of the other specific
features and describe what they are and when
we need this kind of protection. There are
many MPUs from other venders that provide
this. Therefore, this article is less about the
Microchip (formerly Atmel) SAMA5D2 and
more about helping you understand what
each of these security features will bring to
your design.

SAMA5D2 BASICS
Before we delve into the specific security

features of this chip, let me give you a little
background on the it. In 2008 our company
created a line of products for a client built
around the Microchip AT91SAM9G20.
Overall, it worked well for us. The part
was well supported in Linux and that was
important for us. However, we had significant
electromagnetic interference (EMI) issues
with the chip that were very costly for us to
resolve. The data sheet had a little one-liner
that warned us about this but we missed

the significance of that warning amidst the
thousands of pages of documentation. In
2017, we were ready to start a new project
for this client and did not think the existing
processor had enough life in it for the next
10 years of production. After reviewing a
number of candidates, we settled on the
SAMA5D2 (Photo 1). It too appears to have
a solid Linux community around it. It was a
low-power MPU that could run at 500 MHz and
included a built in floating point unit (FPU). It
seemed like a good fit for our purposes.

Although we didn’t select this chip for
these features, the SAMA5D2 family includes
a wide range of security features. The
datasheet mentions these: 5 KB of internal
non-imprinting scrambled SRAM (1 KB non-
erasable on tamper detection and 4 KB
erasable on tamper detection); 256 bits
of scrambled and erasable registers; Up
to eight tamper pins for static or dynamic
intrusion detections; environmental monitors
for temperature, voltage, frequency and an
active die shield; Secure Boot Loader; On-
the-fly AES encryption/decryption on DDR
and QSPI memories (AESB); and a real-time
clock (RTC) with time-stamping on security
intrusions. Let’s take a look at each one (of
course only in thin slices).

NON-IMPRINTING SCRAMBLED SRAM
Simply stated, a small amount of memory

(5 KB) is set aside for sensitive data like
passwords and encryption keys. 4 KB can be
automatically and permanently erased upon

Embedded in Thin Slices

In this next part of his series on IoT security, Bob looks at the
security features of a specific series of microprocessors: Microchip’s
SAMA5D2. He examines these security features and discusses what
protection they provide.

Internet of Things Security (Part 3)
Secure Processors

By
Bob Japenga

circuitcellar.com 51
CO

LU
M

NS

tampering and the other 1 KB not erased
following a security intrusion. Common
to all of our IoT designs is the encryption
and decryption of data using private keys.
Embedded IoT designs present different
challenges for key management than do
smart phones and laptops. Embedded devices
are deployed for many years. Usually a single
server interfaces with tens of thousands
of devices. One of the challenges facing
us as designers is where to store the keys
and passwords. We use either symmetrical
or asymmetrical encryption using the
standard AES encryption. Sometimes we use
asymmetrical encryption which uses a public
and private key as illustrated in Figure 1. On
the Circuit Cellar article materials webpage,
there’s a link to a YouTube video about how
asymmetrical encryption works. At the end of
the video, they show us placing the private key
in a safe. Looks good for the video. But where
is the safe in our embedded system? The non-
imprinting scrambled SRAM is one such safe.
We design systems that contain passwords and
private keys that if disclosed could compromise
an entire fleet. With cyber terrorism a major
threat to even small players like us, protecting
this sensitive data is paramount.

You might say: “But my keys are stored
in non-volatile memory in the application.”
Yes, but when the application program runs
in Linux, the application is usually running
in volatile memory. Or you might say: “I
generate the private key every power up.”
In both cases, the private key and password
ends up in volatile memory. Okay, then you
might say: “But how can someone read the
contents of my keys and password stored in
volatile memory?” One method plays upon
a susceptibility that conventional SRAM has
to imprinting. With SRAM, the way that the
data is stored imposes stresses on the cell’s
transistors that can create a long-term
constant bias voltage on the cell. Over time,
the state of the charge of the cell—a one or
a zero—can be read out long after the power
has been removed from the system. When
heat is applied to the chip, the probability
of imprinting increases. So, without imprint
protection, your cyber attacker has tools to
read your passwords and private keys long
after he or she has removed power from
the device. The SAMA5D2 has the ability to
permanently erase these passwords upon
power removal and upon tampering—more
about tampering later.

In addition, the data in the SRAM is
scrambled with a 32-bit key. In other words,
if we don’t stop the attacker at the moat and
they are able to read the key, we have the
boiling oil to pour on the attacker because the
key is encrypted.

ANTI-TAMPER PINS
Many years ago, I ran a youth group at

our church. An annual event that generated
a lot of interest was the great road race.
The students would break up into teams of
three or four and receive a clue and a panic
envelope at each station. Their job was to
decipher the clue which told them where the
next station was. Then they would travel to
the next station where they would get the next
clue. Should they be unable to decipher one of
the clues in the allotted time, they could open
the panic envelope which would provide the
next location. At the end of the race, the first
one with the fewest opened panic envelopes
won. One year one team zipped through the
course. No panic envelopes were opened.
I suspected fraud but couldn’t prove it. The
next year I instituted tamper detection on the
envelopes. The same team finished first with

PHOTO 1
The Microchip SAMA5D2 is a low-
power MPU family includes a wide
range of security features.

Bob

Hello
Alice!

Alice

Alice's
public key

Alice's
private key

Encrypt

Decrypt

6EB69570
08E03CE4

Hello
Alice!

FIGURE 1
Asymmetrical encryption uses a public and private key as illustrated here.

CIRCUIT CELLAR • JUNE 2018 #33552
CO

LU
M

NS

no unopened envelopes. But they had all been
tampered with and they were disqualified.
This provided great life lesson material for
our next meeting.

Our embedded IoT devices have much more
at stake. Ransom costs and loss of reputation
from a disclosed security breach could sink a
small to medium size company. The SAMA5D2
provides 8 pins used to detect tampering. The
details of how it is done is not important for
this article and not available without an NDA
with Microchip. But why do we need tamper
detection? Isn’t it obvious? Your device has
vital data that you want to protect inside it.
And if you deploy enough of these devices
you could be vulnerable to a ransom attack
or worse. Tamper resistance is not new. For
many years we have created secure devices
with tamper detection. Even our old dome
electric meters had tamper detectors. In one
project we epoxied a device that contained
postage and provided some kind of detection
that an unauthorized entry had happened.
With the SAMA5D2, you not only get notified
of the tamper attack, you also have the option
to automatically erase the sensitive data like
your private keys.

Recently there has been a lot of hype about
the Meltdown and Spectre security bugs. One
reputable site has stated that:

Spectre affects Intel, AMD and ARM
processors, broadening its reach to include

mobile phones, embedded devices, and
pretty much anything with a chip in it.
Which, of course, is everything from
thermostats to baby monitors now.

Although the article’s broad brush covered
“anything with a chip in it,” the article
assumes that these embedded processors
have branch prediction. So, ignoring the
hype—since not anything with a chip in it
has an MPU with branch prediction—we have
to admit that most of our new designs do
have deep instruction pipelines with branch
prediction. Therefore, by their architecture
they are vulnerable to a Spectre like attack.
With the advent of these techniques for
extracting secret keys from our devices, we
need to beef up our layers of protection.
Unlike a PC, most of our embedded systems
would require some kind of physical access
to be susceptible to the Spectre method of
extracting our sensitive data. So, if we have
sensitive data that needs protection and a
cyber terrorist can get hold of one of your
devices, we need tampering detection. If the
feature is easy to use, why not protect your
systems against such intrusions?

One nice feature of the SAMA5D2 is that
it provides a RTC that provides a time stamp
and event counter for tamper detection. That
could prove useful in identifying the extent
and timing of such attacks. Also—although
not defined in the pubic data—you can
imagine how the die shield feature could also
help prevent some cyber terrorist from taking
the lid off the part for additional nefarious
activities including some of the side channel
attacks we talked about in my April article
(Circuit Cellar 333).

Some of the imprinting attacks require
both out-of-spec temperature, frequency and
voltage conditions. Again, the public data
sheet doesn’t provide a lot of information
about how these work, but you can imagine
that locking the safe or erasing the contents
of sensitive data could be a useful deterrent
against such attacks.

Secure Boot-Loader: One of the critical
features needed in all of our IoT devices is the
ability to update the software remotely once
it is deployed. This brings with it two separate
problems: How do we prevent someone from
reading the code as it is being transmitted
from the server and thus be able to reverse
engineer all of our sensitive data? And, how
to make sure that the code is coming from a
trusted source? Encryption and authentication
are critical for that. In all of our IoT systems
we provide both of these features. But once
the program is decrypted and authenticated
it is usually stored in an on-board memory.
We usually avoid storing the program on an

For detailed article references and additional resources go to:
www.circuitcellar.com/article-materials

RESOURCES
Microchip Technology | www.microchip.com

FIGURE 2
System designs that make use of
deep instruction pipelines with branch
prediction are vulnerable to a Spectre-
like attack.

circuitcellar.com 53
CO

LU
M

NS

SD card because it is so easy to reverse
engineer. But unencrypted on-board memory
is now equally easy to reverse engineer.

A secure boot-loader allows you to boot
from encrypted and signed images from
either an SD card or on-board memory.
This prevents someone from removing the
memory chip and reverse engineering your
code since all of the code is encrypted.
Remember: What if someone motivated to
extract money from you got all of your code
by just removing the chip from your bank
card? A secure boot-loader allows us to keep
the code that was encrypted over the air to be
stored in encrypted memory.

On-the-fly AES Encryption of Memory
Access: As part of the Secure Boot-Loader
are the secure locations for storing AES keys
used in the Secure Boot-Loader. The SAMA5D2
provides the ability to encrypt not just the
bootable file, but the DRAM where the Linux
apps run. This provides additional protection
from the intruder who would set up a logic
analyzer on the data bus to reverse engineer
your design. A lot of these features can be
performed in software. Having this feature
in hardware provides just another layer of
security against sophisticate terrorists out
to extort money and reputation from your
company or your client’s company.

CONCLUSION
It is a wild and wooly world out there. There

are people in this world who are desperate for
either making a name for themselves or making
you pay a lot of money to re-instate the fleet of
IoT devices you deployed. The SAMA5D2 MPU
provides a number of built in features to help
us create more bullet-proof IoT devices. We
have looked at each one—but of course—only in
thin slices.

ABOUT THE AUTHOR
Bob Japenga has been designing embedded
systems since 1973. In 1988, along with his
best friend, he started MicroTools, which
specializes in creating a variety of real-
time embedded systems. MicroTools has a
combined embedded systems experience
base of more than 200 years. They love
to tackle impossible problems together.
Bob has been awarded 11 patents in
many areas of embedded systems and
motion control. You can reach him at
rjapenga@microtoolsinc.com.

