—‘1‘ #‘

-

COLUMNS

i s
()

or operat

N
n

or more than 40 years I used old
mercury switch thermostats in my
homes. My argument was that they

were reliable and did everything I
needed. Then about 25 years ago, I upgraded
to a digital 7-day programmable thermostat.
It was great to be able to set different
temperatures for night and day and for when
we were away. But I noticed that the house
was not as comfortable as it was with the
old mercury switch thermostat (Photo 1). It
would cycle from slightly cool to slightly warm
during the coldest months of the year.

My best friend and business partner told
me that there were two problems with the
new thermostat. First it had only 1 degree
of resolution. When the house reached 68°F,
the heat would go off. When it reached 67°F
the heat would come back on. A simple bang-
bang controller. The second problem was
that the control would often overshoot and
the temperature would actually go to 69°F.
My old mercury switch thermostat had a
really neat feature called a heat anticipator

~ that prevented this (see sidebar “How the

Anticipator Works”). I never knew these
simple looking devices had this feature.

As often happens in first- and second-
generation electronics, my inexpensive digital
thermostat didn't work as well as the even
cheaper electro-mechanical mercury switch.
But I was so I cheap I kept it for 25 years. This
month, I decided to enter the 21st century

[A AN

of his new article series on IoT security, Bob

ommand injqctioF:’Command' injection is a ;type:of. .
olves injecting andlexecutingfan unwanted shell ,.

ing system command into your IoT system.

|¥
|

/,/’
[+

and put in smart a Wi-Fi-enabled thermostat.
Guess what? The heating (and cooling) in my
home is now more stable than it was with my
cheap and very old digital thermostat. And the
anticipator algorithm is far more sophisticated
than the little variable resister in the mercury
switch thermostat. But that’s not what we are
talking about this month. What interested me
about this new thermostat was the End User
License Agreement (EULA) that I signed up to
with this thermostat. Among other things, I
agreed to the following:

Not to collect information from the
thermostat using an automated software tool

Not to capture the data stream to or from
the thermostat (we call this sniffing)

That got me thinking. What about the
systems that we design? Would I want to
prevent my users from doing this? This is
exactly what hackers do maliciously. But
many others are out trying to make a name
for themselves and demonstrate holes in the
security of devices. They show the world how
clever they are and how “stupid” we are. But
in the process, they do us a great service.
They expose our faults. Typically, the good
ones report the problem to us and we solve it
before it is hacked maliciously.

Just recently, one of our designs was
hacked into by a very smart researcher. He

circuitcellar.com

51

first contacted our customer’s customer
support but did not get a satisfactory
response. Customer support didn't know how
to handle this. We, the designers, were never
contacted. The result was that he wrote us
up in the Industrial Control Systems Cyber
Emergency Response Team (ICS-CERT) data
base (Figure 1) for all the world to know
about our “stupidity.” Each vulnerability gets a
score and our score was very high. “Very high”
is not good—it means that the vulnerability is
a real serious threat to life on the planet (not
really). He did find the security hole by using
automated software tools and sniffing our data
stream to and from the unit. If our EULA would
have had the words from the thermostat’s
EULA and he was honest, he would not have
done this. Hacker’s will not pay attention to
EULAs, but serious researchers will.

WHAT HAPPENED

At the time of the attack, when new
software was sent down from the host, it was
signed (preventing someone from sending
unauthorized software to our system) but it
was not encrypted. This enabled any hacker
to get access to the PHP code that handled
the HTTP interface. With code in hand, anyone
could find an obvious and gaping security
hole where we were taking input from the
HTTP interface and passing it to the Linux
command line interpreter. We did not limit
or bound the input in any way. This enabled
the user to spoof the host and basically send
whatever commands he wished to the Linux
shell. He could create new user accounts. He
could read our symmetric keys. Ouch!

This is a technique called “command
injection” which is a subset of “code injection.”
How did this happen? We know better. We
know what command injection is. We know
the dangers of command injection. We know
how to stop it and even exploit it. In my
article “ The Internet of Things (Part 5): IoT
Security” (Circuit Cellar 307, February 2016)
I discussed how we used extremely clever
command injection to update some devices
remotely that were destined for RMAs. How
could this happen? Simple. Our systems
are more complex that we are capable of
perfectly protecting. But that doesn’t mean
we don’t keep pushing for perfection. With
that in mind, let’s look a little more in depth
at command injection.

In my article “The Internet of Things (Part
8): Security for Web-Enabled Devices” (Circuit
Cellar 313, August 2016) I talked about code
injection specifically with SQL which provided
a simple mechanization for injecting unwanted
code into the system. Our failure made it even
easier to inject commands. Command Injection
is a subset of Code Injection. In the Common

INDUSTRIAL CONTROL SYSTEMS
CYBER EMERGENCY RESPONSE TEAM

Weakness Enumeration Database referenced
in my article “The Internet of Things (Part 7):
DoS Attacks with a Twist “ (Circuit Cellar 311,
June 2016) command injection is identified as:
“CWE-77: Improper Neutralization of Special
Elements used in a Command.” Basically, a
command injection vulnerability means that
external to your IoT device, a shell command
or operating system command can be executed
that is not intended.

COMMAND INJECTION EXAMPLE

Our security breach didn't happen over
Internet traffic. It happened through use of
an installer accessible configuration screen
from an Ethernet port. When the configuration
screen saved the settings, it created a URL
with all of the settings as parameters. These
were sent to an XML parser. These parameters
were visible to someone sniffing the local
communication which could then be modified
to include any Linux command to be executed.
The code snippet is shown in Listing 1.

cmdxmlin is an app that we wrote that
parses xml input. Notice that we didn't call
the PHP shell_exec directly. A sophisticated
hacker could still simulate the web browser
and append his own commands by utilizing a
feature of the shell command called sequential
execution. Or the hacker could take advantage
of many of the flexible features of the bash
shell to perform all sorts of nefarious attacks.

FIGURE 1

The ICS-CERT coordinates control
systems-related security incidents
and information sharing with
Federal, State, and local agencies
and organizations, the intelligence
community, and private sector
constituents, including vendors,
owners and operators and
international and private sector CERTSs.

if ($_GET[“submit’]1)// when saving config

{

$keys = array_keys($_POST); // get all the parameters

$config_string = “’;
foreach ($keys as $key)

{ // Fi11l config_string with the parameters on the URL

$config_string

.= “\”$key=$_POST[$keyl\” “;

$response = “/apps/cmdxmlin set ${config_string}";

}
}

LISTING 1
Code snippet that captures configuration settings.

52

CIRCUIT CELLAR o FEBRUARY 2018 #331

For detailed article
references and additional
resources go to:
www.circuitcellar.com/
article-materials

How the Anticipator Works

Before computers, electro-mechanical temperature controls

When I first introduced the topic of IoT
security in this magazine, I described it as
defending a castle where there are many
layers of protection including the moat; the
bridge, the entrance gate, the wall and even
the boiling oil. I recommended that you use
as many layers of protection as possible to
mitigate risks. Our security gap could have
been closed or mitigated through a number of
layers as listed here:

Encrypting all program updates: Without
being able to read the code, many forms of code
and command injection security breaches can
be avoided or at least be physically impossible
to find by trial and error. A lot of web services
code is interpreted rather than compiled. That
means the source code is sent down during an
update. Sending your code down unencrypted
is just asking for trouble.

Don't provide root access to the web
interface: When we released our first IoT
device, one of our customer’s customers
asked us if our applications ran as root. They
did because we didn't know better. They
refused to buy the product until we changed
all of our application code to run as non-root.
What would have been easy at the start of
the design was difficult after the design was
complete. Without root access, the hacker
could not have done much damage even with
the command injection security hole.

Limit write access to all critical files: This
is similar to limiting root access. A careful
look at your permissions to your files is in
order. The web server app should not be
able to write any file without some sort of
authentication. Ideally the web server itself

used to have some pretty cool features. In today’s era of very
cheap processing, we sometimes miss these kinds of solutions to
the problems we face. Mercury switch thermostats have a coil that
expands and contracts based on the temperature and rotates the
mercury switch which turns on or off the furnace. In addition, there
is a resistor in the thermostat through which the current flows
that drives the relay that controls the furnace. When the furnace is
running, current flows through the resistor. As the resistor warms
up, because it is close to the thermostat coil, it warms up the coil
(above the ambient temperature). That uncoils the spring and tilts
the mercury switch to shut off the furnace before the ambient
temperature reaches the setpoint thus preventing overshoot. The
resistor is adjustable and if not set right can early or late shut off.

should be limited, but most are not. If your
web server doesn’t support this, then some
sort of watchdog that monitors certain critical
files would be helpful.

Bound all input: Input from the web should
be limited to be valid only within the narrow
range of what you expect. We must recognize
our inherent blind spots in this area. It is hard
for us to think of all of the possible ranges of
input. I love the first example from the classic
“The Art of Software Testing” by Glenford
Myers called a “Self-Assessment Test.” In it,
he asks you to create a set of test cases for
the following simple program:

The program reads three integer values from
an input dialog. The three values represent the
lengths of the sides of a triangle. The program
displays a message that states whether the
triangle is scalene, isosceles or equilateral.

Put down this article and try this now.
Write out every distinct test case you can
think of. You will have to buy the book to see
how many you got right. Or email me your
test cases and I will grade it. At the end of
the article are three of the fourteen that I
missed completely. This self-assessment test
demonstrates how difficult it is to plan for
every possible input.

Never treat data from the web as a
command to the shell: Our engineer assigned
to this described his fix as following:

We closed the hole by writing the “save
configuration” data to a temporary file,
rather than passing them to the command
line interpreter. The ‘cmdxmlin’ program

Mercury switch thermostats had an electro-mechanical feature called a heat
anticipator that worked very efficiently.

circuitcellar.com

53

that used to take the configuration data as
command line parameters now reads the
configuration data from /tmp/set_args.txt.
This way the configuration items are treated
as data and not evaluated by the command
line interpreter.

Study every use of calls to the command
line interpreter (shell): Be very careful with
the passthrough exec system in PHP, the
subprocess or os.system in Python, the
system in Ruby...and you get the idea.

Push hard to close vulnerabilities: We
knew about this security hole in 2012. It
was exposed in 2015 and embarrassed the
customer in 2016. The customer closed the
vulnerability as soon as it was reported. We
didn’t push hard enough to get this changed
as soon as we knew about it. We as developers
need to be more insistent about closing
security holes.

An open EULA: We have come full circle from
our introduction. I would challenge our users to
find our security holes. Let them use automated
tools to find our holes. Let them sniff our data.
Then the EULA would ask them to report it to us
before reporting it to a government watchdog
agency. As I said earlier, the systems are more
complex than we are capable of protecting. We
need others help—especially those that want to
) S

s LAY

« | With the right tools

designing a microprocessor
can be easy.

Okay, maybe not easy, but certainly
less complicated. Monte Dalrymple A
has taken his years of experience
designing embedded architecture and
microprocessors and compiled his
knowledge into one comprehensive guide
to processor design in the real world.

Monte demonstrates how Verilog
hardware description language (HDL)
enables you to depict, simulate, and
synthesize an electronic design so
you can reduce your workload and

increase productivity.

make a name for themselves at our expense. It
is really to our benefit.

CONCLUSION

When you handle things in thin slices,
there is so much to say and so little space to
say it. IoT security is absolutely vital. We
need to get this as right as possible. And we
need each other’s help. Software terrorism
has just begun. In my opinion we’ll only see
it increase. Next time, more lessons learned
in IoT security. &

ABOUT THE AUTHOR

Bob Japenga has been designing embedded
systems since 1973. In 1988, along with his
best friend, he started MicroTools, which
specializes in creating a variety of real-
time embedded systems. MicroTools has a
combined embedded systems experience
base of more than 200 years. They love
to tackle impossible problems together.
Bob has been awarded 11 patents in many
areas of embedded systems and motion
control. You can reach him at rjapenga@
microtoolsinc.com.

Yerilog HDL

k- S m\'\“ i
RTINS
."\.\\\\\\\a\ﬁ:\;

- | cc-webshop.com 2

