April 90192 — lssue 261

(=)}
=]

MBEDDED IN THIN SLICES

by Bob Japenga (USA)

Qetting Started with
Embedded Linux (Part 4)

Linux Software Development Tools

This is the final installment in a four-part series introducing the topic of
working with embedded Linux. Here you learn about the tools required for

the software development process.

his article will discuss some of the

software development tools available for
developing embedded Linux. Let me start by
identifying the basic steps and required tools
in the software development process. The first
tool that you need is a means to enter the
software code into the computer. We'll call
this “the editor.” Then you need the means to
take this representation of the code and turn
it into instructions that the machine can read.
Called in various environments, the assem-
bler, compiler, linker and loader, we will call
this “the code generator.” Finally you need a
means to debug, analyze and test your code.
We will call this “the debugger.” I am exclud-
ing some other management style tools (con-
figuration control, librarians, etc) because
these don’t usually need to be unique to the
hardware and software you are developing. In
addition, a nice tool to have is called an inte-
grated development environment (IDE) which
ties all of these together into a single user
interface.

THE OLD DAYS

The first software program I wrote was in
1969. It was programmed in FORTRAN and
was supposed to solve a differential equation.
The development process involved creating a
flow chart (the design), writing the code on
punch cards (the editor) and submitting the
punch card deck to the computer center to be

run in batch mode (the code generator). Several
hours later, you would get a printout of the
results. Debugging consisted of reading the
results of your printout and figuring out what
you did wrong. Often the first results did not
indicate the answer to the equation but that
the instructions were not in the proper syntax.
Debugging was similar to the old adage from
your shampoo bottle “lather, rinse, and repeat.”
We found ourselves in a seemingly endless
cycle of punching the program in, submitting
the batch to run, and repeating the process
until the program ran cleanly.

A few years later, I was doing embedded pro-
gramming on PDP-8s and PDP-11s. Software
development was initially done by entering the
programs from a printer with a keyboard (!) into
a line editor that enabled us to change and view
one line of our code at a time. We had a code
generator that could be run from the command
line from the terminal. The program would be
installed and run. We looked at the results and
tried to figure out what we did wrong. Most
debugging was done by inserting some form of
instrumentation into the software that would
turn on a light or print something to a printer
or to the user interface to indicate progress, sta-
tus or some result. Sometimes we would insert
a halt or a software trap into the code and read
the results from the switch panel on the front
of the computer. Such was the state of debug-
ging embedded software in the early 1970s.

CIRCUIT CELLAR® = www.circuitcellar.com

Using these “tools” we developed
(albeit slowly) “powerful” controls
that revolutionized an inherently
unsafe bottle making process. Devel-
opment continued this way for several
years.

POWER TO THE PROGRAMMER

One day in the late 1970s, I was at a
trade show and saw an integrated
development environment (IDE) for
developing software on a Motorola
6800 microprocessor. All the
tools were together in one
graphical user interface
(GUI). You could write your
code with their editor and
could see 24 lines of the text
at a time! You could do the
code generation and the
screen would point you to
the exact place where the
error existed. You could run
the code from the same
screen. You could actually
stop the code in specific
locations (break points) and
view the results on the screen. You
could step through the code and watch
your variables change by name. You
could stop the code when a location in
memory was changed. I was in awe of
having such a powerful tool. This was
revolutionary.

Over the next 30 years, the software
development tools advanced signifi-
cantly enabling us to create even more
powerful software. Real-time profiling
(showing where your code is spending
its time), memory leak detectors
(monitoring buffer over-runs and
dynamic memory allocation), code
coverage tools (telling us that we have
exercised every line of code) and many
other enhancements came along.

DEJA-VU ALL OVER AGAIN
Then we started developing embed-
ded Linux applications. With the
exception of our graphical editors, we
went back to 1970s development. We
did code generation from the com-
mand line. Errors were reported by
their line numbers. We debugged by
looking at the results. It was awful! I
was incredulous. Over the first few
years, we purchased a number of inte-
grated development tools and tried

www.circuitcellar.com < CIRCUIT CELLAR®

some open source tools but found
they were totally inadequate. They
were slow. They were buggy. They
didn’t work. They were nonintuitive.
Where were the memory leak detec-
tors? Where were the code coverage
tools? Where were the profiling tools?
We had products to create, so we went
back to the 1970s development para-
digm with the exception of our edi-
tors. We compiled from the command
line. We debugged by adding instru-

“If you tried to develop embedded
Linux systems more than four years
ago and gave up in disgust because
of the inadequacy of the tools, it is
time to take another look. I will

describe two open source IDEs we
use in our company. There are many,
many more. That’s why we call this

column ‘Embedded in Thin Slices.

mentation (printf statements to the
console). Lather, rinse, and repeat.

HOW DO YOU SPELL RELIEF?
Thankfully, over the past five years,
this has changed for the better. I want
to talk about two tools that are cur-
rently available. If you tried to devel-
op embedded Linux systems more
than four years ago and gave up in dis-
gust because of the inadequacy of the
tools, it is time to take another look. I
will describe two open source IDEs we
use in our company. There are many,
many more. That’s why we call this
column “Embedded in Thin Slices.”

ECLIPSE

Initially developed by IBM in 2001,
Eclipse is a full featured and extensi-
ble (through plug-ins) cross platform
IDE written in Java available for Win-
dows (32 bit and 64 bit), Linux and
Mac OS X (Cocoa). With it, you can
design, develop and debug C/C++,
Java, JavaScript, Perl, PHP, Python,
Ruby (including Ruby on Rails), and
many other languages for Linux (and
other systems). In 2004, IBM released
Eclipse to the open source community
and formed a separate nonprofit foun-

dation (The Eclipse Foundation) to
support it. It is funded by membership
dues in the foundation. Many of the
major players in the software industry
are members such as IBM, Oracle,
Cisco, NEC, Intel, and Mentor Graph-
ics.

We have used Eclipse since 2007 to
develop embedded Linux applications.
Of all of the IDEs available for Linux
development it has by far the largest
number of plug-ins to extend the func-

tionality of the tool.

EDITOR
We are using the standard

editor provided with Eclipse
for almost all uses. As old-
time developers, we compare
everything to the old DOS-
based Brief. It was the most
powerful and intuitive pro-
gramming editor we have
m ever used. In our opinion, it

has all been downhill from

there. After Brief’s demise,
we switched to CodeWrite
and it was almost as good a Brief. The
good news is that we have found the
Eclipse editor now almost as good as
CodeWrite. We still cannot do macros
as easily as we did with Brief. It does-
n’t work well for shell script program-
ming— but we can easily configure
Eclipse to seamlessly use a different
editor for different file types. On the
plus side, it does an adequate job dis-
playing your errors following a com-
pile, including knowing when the
problem is a make file error. It han-
dles conditional code (# defines in C)
seamlessly—knowing from your proj-
ect what code is functional and “gray-
ing” out the code not being used. It
nicely points to where variables are
used. As long as you are using a rea-
sonably modern PC and are the only
user, it runs acceptably. You can tell
the Eclipse editor what your coding
standard is and impose it upon all of
your projects. We like the ability to
handle refractoring (changing the
source code throughout the whole
project without affecting the exe-
cutable code).

In summary, “Welcome to the 1990s

Mr. Banks.” The editor has almost
gotten us back to what we had 20

e
d=}
N
[+
=
v
K
el
|
SN
—
=]
N
=}
£
=

N
[d=}
[\
[}
=
wn
2
o
|
SN
a
o]
N
=}
T
=

years ago.

CODE GENERATION

All the IDEs we have used for embedded Linux use the
GNU C/C++ compiler and linker for code generation.
Depending on the processor you are developing for, you can
obtain the GNU cross compiler that meets your needs.
Having used C compilers for more than 30 years, we have
found fewer bugs in this compiler than all our previous
compilers. As with most general-purpose IDEs, Eclipse
enables you to define your toolchain on a per-project basis.
One of the big advantages of Eclipse in the embedded world
is the fact that the Yocto Project is building plug-ins for
Eclipse to better integrate with OpenEmbedded. When
completed, the ease of development and managing embed-
ded Linux systems should be greatly increased.

DEBUGGING

Support for JTAG- and Ethernet-based target debugging
has been around for a long time. You can launch the code
on a target using the GNU debugger over an Ethernet port
or using a JTAG device and debug your application. Many
of the JTAG manufacturers provide Eclipse plug-ins for
their devices. In addition, Eclipse is doing a better job han-
dling the debugging of threads. Even TurboC and Visual
Studio never did that very well.

OTHER TOOLS

Eclipse provides good integration with source control
tools like subversion and git. Even more important, inde-
pendent of source control, it transparently manages your
versions of code. For memory leak detection, we have suc-
cessfully integrated with Dmalloc but have not been able
to make it seamless with Eclipse. This is often the problem
with any software package as large and as flexible as
Eclipse. The learning curve can be steep.

WISH LIST

We would like to see a plug-in that would give us better
visibility into the vast array of information Linux provides.
For example, we would like to be able to monitor queues
and semaphores at a higher level of abstraction. We would
like it not to crash as much. We would like to see it run
faster without having to liquid cool my PC. We wish that
the learning curve wasn'’t so steep. Finally, isn’t there some
way they could keep the interface the same? It seems to be
always changing. If you need to upgrade to use a new plug-
in or to fix a bug, you feel like someone has completely
rearranged all of the rooms, closets, and drawers in your
home.

NetBeans

NetBeans originated as a Java IDE but has been expanded
to become an IDE for PHP, C/C++, and JavaScript. Micro-
Tools originally started using it in 2007 as an IDE for Java
development on an embedded Linux system. Developed as
a student project in 1996 by Sun Microsystems and
released as open source in 2000, it initially was funded by

Sun but is now primarily supported by Oracle.

Overall, NetBeans offers all that Eclipse offers. All of the
pros and all of the cons are summarized in one word: ditto.

NetBeans manages multiple projects a little bit better
than Eclipse. One single-board computer manufacturer is
moving away from Eclipse because of that very reason (but
they are moving to Code::Block with which we have little
experience). NetBeans is a little faster on the same
machine. On the down side, it is not tied into OpenEmbed-
ded or the Yocto Project.

SUMMARY

We have developers at MicroTools who are satisfied with
both. Eclipse has more big-name software companies
behind it as members than NetBeans. Eclipse has many
more plug-in than NetBeans. That means there will be
more bugs (who can test every plug-in’s interaction with
every other plug-in?). There are more JTAG interfaces
available for Eclipse than for NetBeans.

The bottom line is that the development tools for Linux
are now almost as good as what we had in the 1990s but
much better than what we had in the 1960s and 1970s. (&

Bob Japenga has been designing embedded systems since
1973, In 1988, along with his best friend, he started MicroTools,
which specializes in creating a variety of real-time embedded
systems. With a combined embedded systems experience base
of more than 200 years, they love to tackle impossible prob-
lems together. Bob has been awarded 11 patents in many areas
of embedded systems and motion control. You can reach him
at fjapenga@microtoolsinc.com.

RESOURCES

Code::Blocks, www.codeblocks.org.

Dmalloc - Debug Malloc Library, http://dmalloc.com.
The Eclipse Foundation, www.eclipse.org.

Git, http://git-scm.com.

NetBeans, “A Brief History of NetBeans,”
http://netbeans.org/about/history.html.

Subversion, http://subversion.apache.org.

Yocto Project, www.yoctoproject.org.

CIRCUIT CELLAR® = www.circuitcellar.com

