
he other day I switched my wife’s cell
phone provider of 12 years to a down-grad-

ed pre-paid plan. She doesn’t use her phone
often and was using an eight-year-old hand-me-
down phone from one of our grandsons. I esti-
mated that the change was going to save me
about 50% compared to what we were current-
ly paying. When I notified our carrier that we
were switching, the customer service represen-
tative warned me that it was going to cost me
more in the end. As I hung up the phone, I
wondered where they hire people to say those
things.

I also remembered getting a similar warning
from one of the premier commercial off-the-
shelf (COTS) embedded operating system (OS)
suppliers a few years back. We developed a soft-
ware system in conjunction with our cus-
tomer’s proprietary hardware that used this sup-
plier’s highly rated OS. The tools were superb.
The support was mediocre (and expensive).
Sales languished on the product. Eventually we
abandoned the OS and ported the system to
Linux. In six months our customer was selling
the new product on three different hardware
platforms and sales were taking off. As I spoke
to the representative of this proprietary OS
about porting to Linux, he told me to make
sure I told our customer that he would have to
release all of their proprietary software to the
open-source community. Again I wondered how
much they pay these folks to say these things.

This month, I want to look at some specific

54 CIRCUIT CELLAR® • www.circuitcellar.com

Fe
br

ua
ry

 2
01

2
 –

 I
ss
ue

 2
5
9

T

by Bob Japenga (USA)

licensing questions concerning embedded
Linux. It is my desire to dispel some of the
fears that are fostered throughout the develop-
ment community. This article is not intended
to be legal advice, but I hope to frame the ques-
tion, point you to the resources available, tell
you how we handle the license issues, and
describe some pitfalls to avoid.

SOME BACKGROUND
If you are going to build a new embedded

product using Linux, there are essentially four
licenses you need to be concerned about. The
Linux kernel is released under the GNU Gener-
al Purpose License (GPL) Version 2. The kernel
enables you to create proprietary application
software in user space and not be required to
disclose the source code of that proprietary
application code as long as it is not a “derived
work” from the kernel. The kernel license is
very clear about this, saying, “This copyright
does not cover user programs that use kernel

Getting Started with
Embedded Linux (Part 3)

The purpose of this article series is to get you started with embedded
Linux. This month you learn about the various licensing issues an embed-
ded systems designer faces when using Linux.

Linux Licensing Issues

EMBEDDED IN THIN SLICES

HELPFUL DEFINITIONS
COTS: Commercial off-the-shelf
Derived work: A legal term defined under
the copyright laws of the U.S. as a work
based upon one or more pre-existing works
GPL: General-purpose license
LGPL: Lesser general-purpose license

www.circuitcellar.com • CIRCUIT CELLAR® 55

Fe
br

ua
ry

 2
01

2
 –

 I
ss
ue

 2
5
9

used on your COTS OS, if made public, would give your
competition a four-year jump start enabling them to catch
up to you in short order. If you build this device driver into
the Linux kernel and delivered it as a product, you are obli-
gated to release this driver code to your customer. And
your customer could give it to your competitor.

Example 3: You are developing a system that uses a high-
speed serial analog-to-digital converter (ADC) for which
there is no Linux driver. You develop the new driver and
incorporate it into the kernel. As with Example 2, you are
obligated to release this source code to your customers.

Example 4: You are developing some application code
that interfaces to a device that uses a CRC-64 algorithm.
Rather than developing this from scratch, you see that it is
embedded in the kernel with no external interface. If you
lift this source code and place it into your application, you
are obligated to disclose the source code of your entire
application to your customers.

Example 5: You are using an LGPL library that uses a lot
of dynamic memory allocations. You modify the library to
incorporate Dmalloc into it to help you detect memory
leaks. Under the LGPL, you are obligated to release the
object modules to your customers (not just your binaries)
so your customer could relink your modules with a differ-
ent library!

HOW TO HANDLE THESE ISSUES
First and foremost, we have one person who is knowl-

edgeable about the issues and enjoys keeping up with these
licensing issues. He is the go-to guy when license issues
come up.

Let’s look at how we handle each of the examples.
OOM Example: Although we have not created a whiz-

bang and robust OOM, should we do that, we would dis-
tribute that source code with our binaries under the GPL
as we have other kernel modification that we have made.

Proprietary Hardware Example: Kernel drivers can be
either embedded into the kernel or loaded from application
space. It is our understanding of the GPL, that a loadable
driver that uses normal kernel calls that is written from
scratch is not a derived work and thus can retain its propri-
etary nature and does not need to be disclosed. If however,
you modified the kernel and used some proprietary calls in
this loadable module, it would fall under the GPL license.

New ADC Example: As I mentioned in last month’s col-
umn, we try to use peripherals that already have Linux
drivers. That is our first priority and is most cost effective.
In other cases, we have chosen to release the source code
as part of the distribution.

CRC-64 Example: We needed to incorporate a number of
general-purpose check algorithms into one of our products.
Although we found these algorithms in GPL licensed code,
we basically looked and found the same algorithms imple-
mented under Apache-style licenses. In another case, when
we couldn’t find something comparable, we bit the bullet
and implemented the algorithm from scratch.

LGPL Example: We modified a library licensed under the
LGPL for test purposes. However, we chose not to release

services by normal system calls—this is merely considered
normal use of the kernel, and does not fall under the head-
ing of ‘derived work.’”

Accordingly, you can issue your proprietary software
under any type of restrictive licensing that you deem
appropriate for your business model.

The latest version of the GNU General Purpose License
(GPL) is Version 3. Some of the common Linux applica-
tions are released under this license. These powerful appli-
cations can be included in your system without requiring
disclosure of any of your proprietary application code
unless your proprietary code is in one of these modified
Linux applications.

The libraries used by the free toolchain (GNU) are
released under the GNU lesser GPL (LGPL). For example,
this license enables you to link your application to the C
run-time library and distribute your proprietary application
in binary form.

Some Linux applications are released under the Apache
License. You are free to modify any software released under
this license and incorporate them into your embedded sys-
tem without any subsequent restrictions other than notifi-
cation issues.

All of these software license variants have been around
for many years. Each has their own nuances which you
should be familiar with. This is no different than your need
to become familiar with the licenses of any commercial
software you buy. The problem is that most of us scan to
the bottom and click “I agree” and have no idea what we
are agreeing to. For the sake of our fiduciary responsibili-
ties (exposing our companies to lawsuits), and for our own
integrity, we need to understand our rights and our restric-
tions when we incorporate open-source software into our
products.

Using and incorporating these into your embedded Linux
product is consistent with the spirit of the open-source
community.

ISSUES WITH GPL-LICENSED SOFTWARE
A number of issues arise when you modify and distribute

the source code of open-source software. If you are using
the software for your company’s own private use, you can
modify it and are under no obligation to disclose your mod-
ifications. Should you modify it and distribute it, you are
obligated to distribute your modified source code under the
same license agreement as the GPL.

Example 1: You don’t like the kernel’s out of memory
(OOM) logic (which is a major problem for robust embed-
ded systems). You invest an immense amount of time and
effort and create the coolest and most bullet-proof OOM
logic for embedded systems ever devised. You put this into
your product. You are obligated to publish this whiz-bang
solution by distributing the source code to your customers
under the terms of the GPL (which means they are free to
modify and distribute it to whoever they like).

Example 2: Your hardware platform has some proprietary
devices attached to it. The devices are a generation ahead
of your competition. The device drivers you previously

56 CIRCUIT CELLAR® • www.circuitcellar.com

Fe
br

ua
ry

 2
01

2
 –

 I
ss
ue

 2
5
9

Bob Japenga has been designing embedded systems since 1973. In
1988, along with his best friend, he started MicroTools, which special-
izes in creating a variety of real-time embedded systems. With a
combined embedded systems experience base of more than 200
years, they love to tackle impossible problems together. Bob has
been awarded 11 patents in many areas of embedded systems and
motion control. You can reach him at rjapenga@microtoolsinc.com.

The next column will discuss toolchains that can be
used when developing an embedded Linux system. I

RESOURCES
Dmalloc, Debug Malloc Library, http://dmalloc.com.

GNU Operating System, “GNU General Public
License, Version 2,” 1991, www.gnu.org/licenses/gpl-
2.0.html.

———, “GNU General Public License, Version 3,”
2007, www.gnu.org/licenses/gpl-3.0.html.

———, “GNU Lesser General Public License, Version
3,” 2007, www.gnu.org/licenses/lgpl.html.

———, “Frequently Asked Questions about the
GNU Licenses,” 2011, www.gnu.org/licenses/gpl-
faq.html.

K. Yaghmour, Building Embedded Linux Systems,
O’Reilly Media, 2008. Appendix C, Linus Torvald’s
Interpretation of the GPL for Linux.

the modified library and kept the modified library only for
in-house use because of the complications of releasing the
object code of our proprietary application.

Finally, how does our company distribute the modified
GPL software to our customers (who could probably care
less)? We provide a link to the source code in the embed-
ded webpage that is part of the configuration tools we pro-
vide.

WORKABLE BUSINESS MODELS WITH GPL
At the end of the day, if you are in business you need to

make money. There are a number of ways individuals and
companies can create a viable business model using Linux
with its GPL. Here are just two.

For an individual embedded software developer, there are
always needs for new device drivers for Linux. Individuals
can pick certain pieces of hardware and create great drivers
for these devices which then, once approved, can be includ-
ed in the Linux kernel distribution. Your name would be
forever linked to the driver (or perhaps that genre of driv-
ers) and you could become the world’s expert on these
devices for Linux. Consider it advertising. There are a
number of consultants who do just that.

For companies developing hardware systems, the Linux
GPL model will somewhat alter how you develop your
software. But with simple planning, you can keep your
intellectual property private while at the same time utiliz-
ing all of the power of Linux. That is a good business deal.

PITFALLS TO AVOID
As system developers, we face many pressures. One of

those pressures is to “pretend not to know” when it comes
to software licenses. Avoid this if at all possible. Take the
time to read the licenses. It is not rocket science. You will
have the peace of mind that you did it right.

Another pressure is to incorporate just a little bit of
copyrighted code into your application thinking, “No one
will know. We are a small company. I am sure that I could
find it somewhere else if I just took the time.” You will
know and if that is not enough incentive, then you don’t
understand the power of the conscience.

CONCLUSION
In the spirit of “Embedded in Thin Slices,” I hope I have

shared a little bit of what we have learned about licensing
issues when using Linux in embedded systems. There are
many possible scenarios that go beyond the scope of this
column. I hope you can see that you can protect your intel-
lectual property and still be faithful to the licensing
requirements of Linux and its associated applications.
Hopefully I have dispelled the notion espoused by one who
should know better:

“The way the [GPL] license is written, if you use any
open-source software, you have to make the rest of your
software open source. … Linux is a cancer that attaches
itself in an intellectual property sense to everything it
touches. That’s the way that the license works.”

Where do they hire people to say such things?

