December 2011 — lssue 957

%0
(=)

'EMBEDDED [N THIN SLICES

by Bob Japenga (USA)

Qetting Started with
Embedded Linux (Part 2)

(Choosing a Platform for Your Embedded Linux System

You know when to choose Linux for an embedded design. This article details the
platform types that can run embedded Linux. With this information, you can
move ahead and choose the proper foundation for your embedded system.

remember my first engineering project

from my senior year in college. Our task
was to design a weather satellite and my team
was responsible for the control system. I
remember sitting with my teammates over a
set of high-level requirements and a blank sheet
of paper. Four months later, our design was
complete. Now, 40 years of projects later, I
remember this as one of the few that started
with a blank sheet of paper. Since most real
projects we work on are built based on some
previous work, we rarely have complete con-
trol. Almost everything I have done in my
career has been accomplished by standing on
the shoulders of the giants before me, seeing
what others have done, and building upon that.
By the way, most of us attribute this metaphor
to Isaac Newton. But he was quoting the 12th
century French neo-Platonist philosopher
Bernard of Chartre.

What, you may ask, does this have to do with
choosing a platform for hosting an embedded
Linux system? As we look at the options avail-
able, I understand that most of us don’t start
with a blank sheet of paper. Choices will be
made for you by others who will have selected
the target cost of the system, the delivery
schedule, or the processor architecture. I hope
to help you make the choices that you do have
control over. I'll start with two options that
most of you will never have, in order to help
you understand the scope of what is available
with embedded Linux.

THE MOST COMPLEX OPTION

Imagine you were developing a brand new
processor, starting from a completely blank
sheet of paper—a new whiz-bang machine,
unlike anything else ever developed. Or, per-
haps you want Linux to run on an existing
processor, one with no Linux support. How
would you build a version of Linux for this
processor? You could start by visiting the offi-
cial website for the Linux kernel which is
maintained by the Linux Kernel Organization
(see Resources). From there, you could down-
load the latest stable or long-term kernel. At
this point, you would need to choose one or
two processors that were at least somewhat
like yours, look at what they did, and develop
all the support code necessary to make your
processor run Linux. You would be developing

SOME HELPFUL DEFINITIONS
Kernel: the software that is the bridge
between hardware and the software applica-
tions, providing access to and management
of the hardware and software resources
Toolchain: the software that is used to cre-
ate other software, usually including a text
editor, a compiler, a linker, and a debugger
Distribution: a specific package of the Linux
operating system that contains the kernel,
the toolchain, and the application software
Platform: the hardware for hosting an
embedded Linux system

CIRCUIT CELLAR® = www.circuitcellar.com



memory-management Architecture

Notes

You guessed it—Digital Equipment’'s PC killer

One of the most popular embedded architectures

Code Reduced Instruction Set: CPU used in network servers (discontinued in 2011)

Fujitsu’s FR-V Microcontroller family

Renesas H8/300 Series: high-speed processors featuring powerful bit-manipulation
instructions, ideally suited for real-time control applications

X86 family of CPUs

The Itanium architecture of CPUs, specializing in explicit instruction-level parallelism

A 32-bit RISC architecture CPU developed by Mitsubishi for embedded systems

The Motorola 68000 CPU architecture

developed by MIPS Technologies

The MIPS CPU (Microprocessor without Interlocked Pipeline Stages) is a RISC

Power PC 32- and 64-bit CPUs

Precision-architecture RISC CPU developed by Hewlett Packard

IBM S/390 series of CPUs

code, timers, and Alpha
memory interfaces, ARM
all patterned after the CRIS
Linux kernel design FR-V
paradigm you see in H8300
other processors’s
Linux code. Eventual- 1386
ly, you would also IAG4
need a toolchain for M32R
this new processor, M68k
but that is another MIPS
discussion.

PPC and PPC64
THE NEXT PARISC
OPTION S/390

Just as I have rarely

Super H and Super H64

by Hitachi

A 32/64-bit RISC architecture of Microcontrollers for embedded systems developed

started with a blank

SPARC and SPARC64

The Scalable Processor ARChitecture, developed by Sun

sheet of paper, you V850

Renesas’s CPU architecture, targeted at real-time processing applications

will probably not be

X86-64

X86 64-bit family of CPUs

asked to put Linux on
a brand-new processor
family. You may,
however, be called
upon to put Linux on a processor that
was built by the giants before you. In
that case, you will just add a new
processor within an existing family of
processors. Table 1 provides a list of
some the families currently supported
by the Linux Kernel Organization.
This list will give you an idea of the
breadth of support Linux has in the
processor community. Under each of
these families, there can be scores of
individual processors.

If you put Linux on a new processor,
your software will be added to the list
of supported processors for your fami-
ly (called an architecture). As before,
you would be modifying all of the key
hardware interfaces, modifying the
toolchain, and then building the nec-
essary Linux applications.

GETTING TO REAL EXAMPLES

I would hazard a guess that few of
you fall into either of these first two
categories. More likely, you are put-
ting Linux on a system with a proces-
sor that’s already supported.

If your processor is already support-
ed, use the Linux configuration tool
provided for the kernel and select your
processor, the various peripherals
(such as the PHY), and all of the glue
logic for your project. If these are sup-
ported, then build the kernel and the

www.circuitcellar.com <« CIRCUIT CELLAR®

associated support applications (i.e.,
file system, network options, etc.),
and away you go.

Hold on. What if your peripherals
and glue logic are not supported?
Great question. At this point, you are
no longer standing on the shoulders of
giants. Instead, your hardware design-
er is standing on your feet. If the hard-
ware is already cast in copper, you are
stuck and will need to write your own
drivers, expending a lot of time and
money. To simplify your task, all the
peripherals and glue logic you place
around the processor should preferably
be selected from the list of those sup-
ported. This means you should try to
be involved in the hardware design
early on. Fortunately, a lot of devices
are supported. Unfortunately, I have
never found a definitive, up-to-date
list, because it is constantly changing.
My approach has been to take the
Linux kernel source code I have down-
loaded and search the driver tree for
the particular A/D, real-time clock,
PHY, or I/O expander I am using and
try to find out if it’s supported. Just
use the first few characters of the
device part number and see what you
find. If the device is supported, you’ll
need to find out whether that driver is
supported by your specific processor.
For this, you can use the Linux config-

Table 1—Some of the processor families/architectures supported by Linux

uration tool. Sometimes, the chip ven-
dor will say that the device is support-
ed under Linux, it may even provide
the driver. For example, Analog
Devices recognized the importance of
providing Linux drivers, and has pro-
vided a comprehensive list of its
peripherals with Linux drivers (see
Resources). I expect others will soon
follow.

Thus far, I've glossed over another
important part of your project. All the
supporting application software needs
to be compiled for your particular
processor. Things like the C library
(assuming you are programming in C),
the file system, ntp, telnet, or a web
server will all need to be built for your
particular processor. I've also skipped
over another important issue: your
toolchain. Stay tuned for more on that
in my next column.

OPENEMBEDDED OPTION

The Linux Kernel Organization
approach is not for the faint of heart.
OpenEmbedded is slightly better. This
open-source project was created to
enable embedded-system developers to
create a complete Linux distribution.
There is an active community of
developers, just like you and me, who
are building embedded systems.
Unlike the Linux Kernel Organiza-

I~
el
N

[}

=

4

2
ot
|
—
—
=

N
=

[}
—
£

@

9

3
a



~
el
N
o
=
7
5
—_—
|
—
—
=
&N
=
=
£
<
=

tion’s kernel.org, which is used by the entire Linux com-
munity, OpenEmbedded is specifically targeted to create
the kind of systems you and I work with.

OpenEmbedded supports a wide variety of architectures
and processors, but there are some unsupported architec-
tures, such as the DEC Alpha. You can choose your proces-
sor following a set of recipes and build not only the kernel,
but the toolchain and the supporting Linux applications.

We have used OpenEmbedded to move a project built
around a reference design (see below) to a later version of
the kernel. At the end of the project, the entire package
was well configured and the process was repeatable. (It
reached Level 2 on the Capability Maturity Model continu-
um of software development, which was developed by the
Software Engineering Institute at Carnegie Mellon Univer-
sity to help improve software reliability.)

The disadvantage of using OpenEmbedded is that there is
a steep learning curve to learn how to use its tools. It can
take weeks to get Linux up on your board.

REFERENCE DESIGN OPTION

If you're starting to feel dizzy, just hang in there. It's get-
ting easier, not harder. Another option for a hardware and
system designer who hopes to use Linux is to choose a ref-
erence design, which is supplied by chip or board manufac-
turers. My company has used reference designs from
Cogent Computer Systems, Texas Instruments, and Atmel.
They provide schematics, application notes, a bill of mate-
rials, and a complete Linux distribution. This approach is
quick and easy. You can begin writing software on a devel-
opment board, which is usually similar to your own board
at the computer architecture level. You can design your
board with the exact same or similar parts to those used in
the reference design, and then use the same Linux distribu-
tion you used on the development board. We have had
Linux running on our proprietary board within one day
when we use this approach.

A disadvantage to this approach can occur if the manu-
facturer does not support the processor or the supporting
chips. If you look at the Analog Devices webpage I refer-
enced earlier (see Resources), you'll note that the company
has indicated whether or not each device is supported. For
products with long life spans and many software iterations,
this is critical.

Another problem can happen when you want to add a
device that is only supported in a newer kernel. For exam-
ple, we wanted to add a new Wi-Fi USB device and found
that it required a newer kernel or back porting the driver—
both painful processes. If all of your other drivers are not
supported in that newer kernel (e.g., because the chip man-
ufacturer never put them into the standard kernel), adding
that device will be painful. When this happened to us, we
were severely limited in our ability to add new devices the
customers demanded.

SINGLE-BOARD COMPUTER OPTION
If your budget can tolerate it, perhaps the simplest plat-
form to build a Linux project on is a single-board computer

(SBC) or a module (SOM) that comes with Linux already on
it. There are literally thousands of such SBCs and SOMs.
With this option, you can forget about spending any extra
time getting embedded Linux to work, and benefit immedi-
ately from its power. In other words, you can get straight
to what makes your company unique: your application.

Obviously, this comes at a higher recurring cost. Howev-
er, I have found that it works well in two situations: when
the production volume shipped is low (less than 1,000 per
year) or when the time to market is critical. In one of our
projects, a company needed to hit the ground running. To
make money in its business model, it needed to sell more
than 3,000 per year, but it was willing to take a loss on the
first few thousand. So, we designed the system around a
SBC and delivered the prototype within nine weeks, and a
fully qualified version—one that meets the standards of
Underwriters Laboratories (UL), the Federal Communica-
tions Commission (FCC), and the American National Stan-
dards Institute (ANSI}—within six months. Then, after it
established market presence and its volumes skyrocketed,
we redesigned the company’s system around an ARM9 ref-
erence design from Atmel. All the application code now
runs on both systems, despite the differences between the
tWO processors.

Finally, another one of our customers built their system
around a SBC using an X86 architecture using a compact
flash for memory. In this case, you can take a standard
Linux distribution—such as Ubuntu, Fedora, or Red Hat—
drop it on the card, tweak the BIOS to boot from the card,
and go. This customer knew nothing about Linux, but
developed a successful embedded Linux application by
booting from flash memory this way without our help!

ENDLESS OPTIONS

Price, schedule, and history can all affect the platform
options available to you. But there are many options. There
is much we haven'’t yet covered, and what we have covered
has only been in thin slices. But then, that is what this col-
umn is all about. See you next time, when we’ll talk about
toolchains and licensing issues. (&l

Bob Japenga has been designing embedded systems since
1975, In 1988, along with his best friend, he started MicroTools,
which specializes in creating a variety of real-time embedded sys-
tems. With a combined embedded systems experience base of
more than 200 years, they love to tackle impossible problems
together. Bob has been awarded 11 patents in many areas of
embedded systems and motion control. You can reach him at
rjiapenga@microtoolsinc.com.

CIRCUIT CELLAR® = www.circuitcellar.com



RESOURCES

Analog Devices Wiki, Linux Driver, 2011,
http://wiki.analog.com/resources/tools-software/linux-
drivers-all?force_rev=1.

The Linux Kernel Organization, www.kernel.org

OpenEmbedded, 2011, www.openembedded.org.

SOURCE
ARMY Reference Design
Atmel Corp. | www.atmel.com

www.circuitcellar.com <« CIRCUIT CELLAR®

December 2011 — lssue 957

%))
™



