
56 CIRCUIT CELLAR® • www.circuitcellar.com

O
ct
ob

er
 2

01
1
 –

 I
ss
ue

 2
5
5

I

by Bob Japenga (USA)

n Malcolm Gladwell’s bestseller Blink he
talks about the way we make decisions. In

particular, he describes a process our brains go
through called “thin slicing.” Thin slicing
describes our ability to find out what is really
important with limited data. I have been
designing embedded systems for 38 years, yet I
find I am always a beginner. I always have lim-
ited data and a limited vision of what is coming
next. The field is so broad and the applications
so varied, that no one can fully understand even
a small portion of the field. In this and subse-
quent columns, I’ll write about some thin slices
of my experience in the field of embedded sys-
tems design.

For the next three columns I’ll share my
experience with embedded Linux. This month I
focus on choosing Linux for embedded applica-
tions. The next two columns will discuss
choosing a platform, a tool chain, and licensing
issues.

RTOS FOR EMBEDDED SYSTEMS
When do you need a real-time operating sys-

tem (RTOS) for our embedded system? You
always need to be careful with the tools on
your tool belt. When you have a great hammer,
it’s amazing how many things start looking like
nails. Using Linux in embedded systems can be
that way. It’s so powerful, once you have invest-
ed the time to learn how to deploy it (and that
investment is not cheap if you port your own

version of the kernel—more on that next time)
and know how to do it quickly, everything
starts looking like a Linux target.

Perhaps a broader question needs to be
answered first: When do you need an RTOS in
your embedded design? The two thinly sliced
answers I have found are: when you have more
than two or three concurrency requirements.
Or, when you have (or even may have) a num-
ber of complex generic devices that require
device drivers or when you have one or more
complex generic functional requirements.

CONCURRENCY REQUIREMENTS
Basically, concurrency means that you have

to do two things at the same time—concurrent-
ly. These can creep up on you unawares. Cer-
tainly, we can all recognize the apparent ones.
For example, a system that has two or more
independent control loops is the most obvious
one. But anytime you talk to interfaces that
have variable response rates with significant
delays you have added a concurrency require-
ment. For example, let’s imagine a simple
device with a simple TCP/IP stack. The single-
thread user interface makes a call to “ping” a
device to see if it’s there. The stack may take
anywhere from 1 ms to 20 s to return. How
many of us use inane user interfaces daily that
force us to wait the 20 s before the network
times out—even to abort the call? That kind of
interface puts a concurrency requirement on

Getting Started with
Embedded Linux (Part 1)

This three-part series introduces the topic of embedded Linux. Why should
you choose Linux? To begin with, it can easily add features, devices, and
functionality—many of which are already built into the operating system.
Read on to find out more.

When to Choose Linux for Your Embedded Design

Embedded in Thin Slices
“Embedded in Thin Slices” is a new bimonthly column devoted to helping
professionals hone their embedded programming and design skills. Topics such
as embedded Linux and how to deal with concurrency issues will be covered.

www.circuitcellar.com • CIRCUIT CELLAR® 57

O
ct
ob

er
 2

01
1
 –

 I
ss
ue

 2
5
5

added on to some of our designs long
after the first release. These were fea-
tures for which we had not given a
minute of forethought to in the origi-
nal design.

The first feature was a full key-

board. A customer wanted to expand
his user interface from our keypad to a
full QWERTY keyboard. Solution with
Linux: No change. Plug a USB key-
board in. No drivers to write. No
queues to change.

The second feature was e-mail capa-
bility. A customer wanted to alert
maintenance people with an e-mail
rather than a fax. Solution with Linux:
Add an existing open-source mail pro-
gram and a simple interface to add the
e-mail addresses.

The third feature was remote dis-
play and control. A customer wanted
to be able to remotely control a cus-
tom QVGA display with a custom
keypad from his PC. Solution with
Linux: An open-source Linux virtual
network computing (VNC) library
enabled the customer to remotely con-
trol and monitor this custom user
interface with little effort on our part.

The fourth feature was a cell
modem. A customer wanted to pro-
vide Internet connectivity in remote
sites that did not have Internet serv-
ice. An open-source Linux ppp dae-
mon was easily configured to talk to a
large number of cell modems and net-
works.

A fifth feature was proxy settings.
Networking is a big reason we choose
Linux. Anytime a system requires
flexible, secure, and expandable Inter-
net connectivity, Linux is our choice.
With Linux, we get everything we
need (and usually more) for safe and

your system.
Our company does a lot of projects

with only a few concurrency require-
ments. These are nicely handled with
a foreground/background scheme or a
single main loop, using a few inter-
rupt handlers for the con-
currency. No RTOS is
needed. But I have found
that once you have a
user interface and one or
more slow interfaces,
some sort of thread-
ing/multitasking is
essential to keeping the
design and user interface
clean.

DEVICES & FUNC-
TIONALITY

One of the other things that drives
us to choose an RTOS is the need to
interface with a generic complex
device. By generic, I am not talking
about devices that are unique to our
proprietary system. I’m talking about
devices that have general utility, such
as USB sticks, cameras, cell modems,
wear-leveling flash memory, CODECs,
PHYs, or Wi-Fi devices, for which
device drivers have already been writ-
ten. We simply cannot take the time
to design the software drivers for the
vast array of devices that some of our
embedded systems need to talk to.
Many RTOSes provide a wide assort-
ment of these generic drivers to sim-
plify the task of interfacing to them.

Similarly, sometimes our require-
ments contain requests for wheels
that have already been invented, such
as encryption and compression algo-
rithms, mesh networks, remote
access, and remote control. We design
a lot of systems that often start with a
small device and function comple-
ment. But user demand forces us to
add devices and functionality we
never dreamed of long after the design
is complete. This is where a full-
fledged RTOS like Linux pays for
itself over and over again. These
already invented devices and function-
ality are added for low-entry cost and
we can concentrate on the problem
domain we are trying to address.

Allow me to list a few of the
devices and functionality that got

secure networking. We had fully
deployed a system when, late in the
game, our customer discovered that
they needed proxy capability for some
of their customers. With Linux, the
answer to our customer was: “No

problem.” It’s built in. We didn’t
think of it—but we didn’t need
to.

Without question, it costs us
less time to add these features (as
well as many others) to our cus-
tomers’ products because we
chose Linux as our RTOS.

If we have these needs, why
choose Linux? Certainly the con-
currency requirements can be
met with a wide range of avail-
able RTOSes. One of the hottest
items of late is the FreeRTOS

project, which offers an RTOS ported
for more than 27 architectures. If you
require concurrency but not complex
generic devices or complex generic
functionality, then Linux is probably
more complex than you need.

A LINUX ROTS?
Before we leave the topic of concur-

rency, I need to address the real-time
nature of the operating system (OS). I
suspect that some of you may be bit-
ing your tongue when I describe Linux
as a real-time operating system. If by
that you mean an OS that must meet
hard deadlines in the sub-millisecond
range that can never miss a deadline
without extreme consequences, then
you are correct. Various successful
attempts have been made to add real-
time extensions to the Linux kernel.
But out of the box, Linux does not
meet that strict requirement. Basical-
ly, the two terms of interest are deter-
ministic scheduling and low and
deterministic latency. If there is inter-
est, I can talk further about this in
another column.

An example of a simple hard dead-
line real-time requirement is a generic
SPI or I2C slave device (assuming that
your processor doesn’t have built in
support for it). In the latest Linux ker-
nel, you will be hard pressed to find a
driver to support this seemingly sim-
ple interface. The reason is that Linux
can’t meet the timing requirements
the host would demand of such a

“When you have a great hammer,
it’s amazing how many things start
looking like nails.Using Linux in
embedded systems can be that way.
It’s so powerful, once you have
invested the time to learn how to
deploy it, everything starts looking
like a Linux target.”

58 CIRCUIT CELLAR® • www.circuitcellar.com

O
ct
ob

er
 2

01
1
 –

 I
ss
ue

 2
5
5

device. Although the master can slow the interface down,
the device is a slave to the master’s clock. If you don’t con-
trol the master, your driver will sometimes fail to deliver.

We get around this in our designs by putting simple
microcontrollers (less than $.50) in front of Linux to meet
any hard deadlines. It’s not worth it to try and bend the OS
and to use real-time extensions to make it meet such rigid
demands. For the most part, doing it in hardware is inex-
pensive and, more important, easily verifiable.

That said, we had a requirement for Linux to process
interrupts with a latency of less than 10 to 20 µs. Our ini-
tial design had a PIC microcontroller in front to handle
this. However, since
the requirement was-
n’t “hard” and we
could live with a
retry, missing one in
every 200 of these
events wasn’t a big
deal. So, in produc-
tion, we eliminated
the PIC front end and
are handling it just
fine in Linux—most of
the time. This is why I call Linux a real-time operating sys-
tem. You can design your application and your drivers with
very low latency. Determinism is the problem.

So, in that sense, Linux can handle some pretty rigorous
real-time requirements. In addition, the Linux community
has done a lot in the last five years to add real-time fea-
tures into the kernel. But interestingly enough, we have
not had a need to utilize most of these features as of yet.

AVAILABLE OPTIONS
If you need concurrency, you’ve settled the hard deadline

issues (either from a specification point of view or by hard-
ware), and your system has one or more complex drivers or
generic functions, what are your options? One solution is
to roll your own. Certainly this is an option, but I cannot
think of one reason to justify it. A second solution is to use
a commercial off-the-shelf (COTS) OS. Certainly many of
the fine COTS OSes offer a plethora of complex device
drivers and complex generic functionality as part of their
offering. We have used QNX, Microsoft Windows CE, Wind
River VxWorks, Green Hills Integrity, and Mentor Graphics
Nucleus on a number of systems, and all offer excellent
tools, generic drivers, and much generic functionality. The
cost (both recurring and nonrecurring) for some of these is
staggering. A third solution is to use Linux (we’ll talk
about some of the flavors next time). The compelling factor
for us to choose Linux was not entry cost. There were two
driving factors: Availability of complex drivers and com-
plex generic functionality we never dreamed of and avail-
ability of the source code when things don’t work.

DRIVERS & FUNCTIONALITY
Our customers and their customers are constantly

demanding new features. New features require new devices

Bob Japenga has been designing embedded systems since
1973. In 1988, along with his best friend, he started MicroTools,
which specializes in creating a variety of real-time embedded sys-
tems. With a combined embedded systems experience base of
more than 150 [Bob, is this number correct?] years, they love to
tackle impossible problems together. Bob has been awarded 11
patents in many areas of embedded systems and motion control.
You can reach him at rjapenga@microtoolsinc.com.

and new devices require new device drivers. It is my thin
slice that new Linux drivers for new devices and new func-
tionality are available more quickly than from any other
option other than Windows (drivers and functionality for
Windows CE is another question). When my customer
demands SSH instead of telnet and my RTOS vendor only
offers telnet, what are my options? I don’t have enough
pull to make them change. Do I port SSH to the COTS OS?
Do I lose the customer? None of these options are pretty.

Furthermore, if the device requires me to write the driv-
er, Linux again wins hands down in terms of ease of devel-
opment. Although I would say the documentation is harder

to find, there is so much released source
code that I can usually pattern my new
driver after something similar without
completely reinventing the wheel.

Without question, my thin slice tells
me that Linux offers more drivers for
more devices and more complex gener-
ic functionality than any OS on the
planet with the exception of Windows.
Here is where the issue of entry cost is
not the primary concern. How much is

it worth to be able to quickly and inex-
pensively add these features and remain competitive? This
is where the real cost savings of Linux works in our envi-
ronment.

SOURCE CODE AVAILABILITY
Finally, support provided by the COTS is great theoreti-

cally. But we have uncovered bugs in four of the five previ-
ously mentioned players and gotten stuck. Not one of
them was ever fixed by the supplier. These are well-
designed OSes, so when we uncover a bug it is usually very
obscure and random. How can we get them to duplicate it?
They need our hardware and our application. Many times
we can’t even prove that it’s in their code and not ours.
Without the source code, we’re just plain stuck. We fully
understand why, in their business model, they cannot
release the source code. But for this reason alone, we
choose Linux for the kinds of systems we build.

A THIN SLICE OF LINUX
When our projects require concurrency and flexible and

extensible functionality, my thin slice of reality says Linux
every time. I would love to hear from you. What has been
your experience with embedded Linux or with the other
major players? I

“My thin slice tells me that
Linux offers more drivers for
more devices and more complex
generic functionality than any OS
on the planet with the exception
of Windows. ”

www.circuitcellar.com • CIRCUIT CELLAR® 59

O
ct
ob

er
 2

01
1
 –

 I
ss
ue

 2
5
5

RESOURCE
The FreeRTOS Project, www.FreeRTOS.org.

