
CIRCUIT CELLAR • APRIL 2014 #28554
CO

LU
M

NS

To help embedded systems designers
achieve their design goals, Linux offers

a variety of file systems that require only a
moderate amount of effort to implement. This
article introduces several file systems and a
networking protocol and describes how and
when to use each one.

WHAT IS A CRAMFS?
While pursuing my Master’s degree in

1973, a professor made a statement I will
never forget: “Memory prices are plunging
so fast you will never have to worry about
how much memory your designs use from
now on.” Obviously, this professor did not
have a crystal ball and missed something
that has been a design challenge in virtually
every embedded system I have designed. Our
systems demand more and more memory (or
file space) and a compressed read-only file
system (CRAMFS) can be a useful solution in
some instances.

A CRAMFS is an open-source file system
available for Linux. I am not sure where the
CRAMFS gets its name. Perhaps it gets its
name because a CRAMFS is one way to cram
your file system into a smaller footprint.
The files are compressed one page at a time

using the built-in zlib compression to enable
random access of all of the files. This makes
CRAMFS relatively fast. The file metadata
(e.g., information about when the file was
created, read and write privileges, etc.) is
not compressed but uses a more compact
notation than is present in most file systems.

WHEN TO USE A CRAMFS
The primary reason my company has used

a CRAMFS is to cut down on the flash memory
used by the file system. The first embedded
Linux system we worked on had 16 MB of RAM
and 32 MB of flash. There was a systems-
level requirement to provide a means for
the system to recover should the primary
partition become corrupt or fail to boot
in any way (see Part 3 of this article series
“Designing Robust Flash Memory Systems,”
Circuit Cellar 283, 2014, for more detail). We
met this requirement by creating a backup
partition that used a CRAMFS.

The backup partition’s only function was to
enable the box to recover from the corrupted
primary partition. How we accomplished that
is a discussion for another day, but we had
very little flash memory to hold the Linux
kernel, the file system, the boot-loader, and

Embedded File
Systems (Part 4)

EMBEDDED IN THIN SLICES

Specialized Linux Tools
Several types of file systems are available for Linux. This article discusses compressed read-
only file systems (CRAMFS), RAM file systems, network file systems (NFS), and the Samba
networking protocol.

By Bob Japenga (US)

circuitcellar.com 55
CO

LU
M

NS

the application. We were able to have the two
file systems identical in file content, which
made it easy to maintain. Using a CRAMFS
enabled us to cut our backup file system
space requirements in half.

A second feature of a CRAMFS is its read-
only nature. Given that it is read-only, it
does not require wear leveling. This keeps
the overhead for using CRAMFS files very
low. Due to the typical data retention of flash
memory, this also means that for products
that will be deployed for more than 10 years,
you will need to rewrite the CRAMFS partition
every three to five years.

The fact that the file system is read-only
can make it difficult to deploy in all situations.
For example, once our CRAMFS began using
encryption keys that were uniquely calculated
for each system one time at start-up (this
took several minutes on a 200-mHz ARM9
processor) the CRAMFS became a problem.
We could not store the calculated keys on
the CRAMFS and the start-up delay was
unacceptable. This forced us to come up with
an alternate backup file system.

HOW TO MAKE A CRAMFS
As with the other file systems I have

discussed, implementing a CRAMFS with
Linux is simple and relatively painless. Linux
provides a tool (mkfs) you can use to take any
group of directories and files and create a
CRAMFS image. Actually, mkfs is a wrapper
for a variety of file system building tools.
mkfs.cramfs is the tool used to create the
CRAMFS image. Once written, the image is
placed in its own partition.

WHAT ARE RAM FILE SYSTEMS?
Linux provides two types of RAM file

systems: ramfs and tmpfs. Both are full-
featured file systems that reside in RAM and
are thus very fast and volatile (i.e., the data
is not retained across power outages and
system restarts).

When the systems are created with the

mount command, you specify the ramfs size.
However, it can grow in size to exceed that
amount of RAM. Thus ramfs will enable you
to use your entire RAM and not provide you
any with warning that it is doing it. tmpfs
does not enable you to write more than the
space allocated at mount time. An error is
returned when you try to use more than you
have allocated. Another difference is that
tmpfs uses swap space and can swap seldom
used files out to a flash drive. ramfs does
not use swapping. This difference is of little
value to us since we disable swapping in our
embedded systems.

WHEN TO USE RAM FILE SYSTEMS
In 1987, the Department of Defense began

requiring the use of Ada in new embedded
systems. Shortly thereafter I bought an Ada
compiler for my IBM PC at work. Much to my
surprise, the compiler came with a board
to plug into the PC. The board added a RAM
file system to my PC. To improve the speed
of compiling from glacial to turtle-like, the
compiler designers used a RAM file system to
store all intermediate results.

Speed is one of the primary reasons to use
a RAM file system. Disk writes are lightning
fast when you have a RAM disk. We have used
a RAM file system when we are recording a
burst of high-speed data. In the background,
we write the data out to flash.

A second reason to use a RAM file system
is that it reduces the wear and tear on the
flash file system, which has a limited write
life. We make it a rule that all temporary files
should be kept on the RAM disk. We also use
it for temporary variables that are needed
across threads/processes.

HOW TO MAKE A RAM FILE SYSTEM
Since tmpfs is built into Linux, you can

simply mount a RAM drive with a command
such as:

mount – o size=16G –t tmpfs my_

FIGURE 1
This layout shows the memory regions
required to bring up one of my
company’s embedded Linux designs
with no redundancy.

PLC PLC

PLC

CRC

Embedded
controller

Embedded
controller

Embedded
controller

Embedded
controller

Embedded
controller

Embedded
controller

Embedded
controller

Embedded
controller

Embedded
controller

Embedded
controller

Embedded
controller

Embedded
controller

Hard drive

CIRCUIT CELLAR • APRIL 2014 #28556
CO

LU
M

NS

tmpfs /mnt/tmpfs

where the maximum size is 16 GB, the type
of file system is tmpfs, the name is my_
tmpfs, and the access point (device name) is
/mnt/tmpfs. The size can also be specified
in terms of percentage of your total physical
RAM. tmpfs will only use the RAM that it
needs up to the maximum specified. If you
don’t specify a maximum, it defaults to 50%
of your total physical RAM.

ramfs is also built into Linux and is created
with a command such as:

mount –o size=20m –t ramfs my_
ramfs /mnt/ramfs

where the type is ramfs, the name is my_
ramfs and the access point (device name) is
/mnt/ramfs.

WHAT ARE NETWORK FILE
SYSTEMS?

In the early 1990s I started working with a
company that developed embedded controllers
for machine control. These controllers had a
user interface that consisted of a PC located
on the factory floor. The company called
this the production line console (PLC). The
factory floor was hot, very dirty, and had a
lot of vibration. The company had designed
a control room console (CRC) that networked
together several PLCs. The CRC was located
in a clean and cool environment. The PLC and
the CRC were running QNX and the PLC was
diskless. The PLC booted from and stored all
of its data on the CRC (see Figure 1).

This was my first exposure to a network
file system (NFS). It was simple and easy to
configure and worked flawlessly. The PLCs
could only access their “file system.” The CRC
could access any PLC’s files.

QNX was able to do this using the NFS
protocol. NFS is a protocol developed initially
by Sun Microsystems (which is now owned by
Oracle). Early in its lifetime, Sun turned the
specification into an open standard, which
was quickly implemented in Unix and its
derivatives (e.g., Linux and QNX).

WHEN TO USE AN NFS
One obvious usage of an NFS is for

environments where a hard drive cannot
easily survive, as shown in my earlier
example. However, my example was before
flash file systems became inexpensive and
reliable so that is not a typical use for today.

Another use for an NFS would be to simplify
software updates. All of the software could be
placed in one central location. Each individual
controller would obtain the new software
once the central location was updated.

The major area in which we use NFS today
is during software development. Even though
flash file systems are fast and new versions of
your code can be seamlessly written to flash,
it can be time consuming. For example, you
can use a flash memory stick over USB to
update the flash file system on several of our
designs. This is simple but can take anywhere
from several seconds to minutes.

With an NFS, all of your development tools
can be on a PC and you never have to transfer
the target code to the target system. You use
all of your PC tools to change the file on your
PC, and when the embedded device boots up
or the application is restarted, those changed
files will be used on the device.

HOW TO MAKE AN NFS
An NFS is built into Linux and thus is pretty

trivial to set up. The embedded system can
mount an external drive using a combination
of the Mount command and an entry in the file
system table file (usually in /etc/fstab). The
external drive requires an NFS driver that is
easily available for Windows and is built into
all Linux distributions.

WHAT IS SAMBA?
Although we don’t like to admit it, many

of us still have Windows machines on our
desks and on our laptops. And many of us are
attached to some good development tools on
our Windows machines.

Samba is not exactly a file system but
rather a file system/networking protocol
that enables you to write to your embedded
system’s file system from your Windows
machine as if it were a Windows file system.

WHEN TO USE SAMBA
Although I primarily see Samba, like an

NFS, as a development tool, you could certainly
use it in an environment where you needed to
talk to your embedded device from a Windows
machine. We have never had a need for this,
but I can imagine it could be useful in certain
scenarios. The Linux community documents a
lot of Samba users for embedded Linux.

HOW TO MAKE SAMBA
To make a Samba, two daemons will need

to be built for your processor: one (smbd) to
handle file and printer sharing and one (nmbd)
to handle NETBIOS to IP name services.
Virtually all distributions of Linux will have the
necessary make files and recipes for you to
put Samba on your embedded device.

USEFUL EMBEDDED SYSTEMS TOOLS
You are now armed with some additional

tools to create incredible embedded systems.
Each of these specialized file systems has its

circuitcellar.com/ccmaterials

RESOURCES
FreeNFS, http://freenfs.
sourceforge.net.

B. Japenga, “Embedded File
Systems (Part 3): Design-
ing Robust Flash Memory
Systems,” Circuit Cellar 283,
2014.

Samba, www.samba.org.

SOURCE
ARM9 Processor
ARM, Ltd. | www.arm.com

ABOUT THE AUTHOR
Bob Japenga has been
designing embedded
systems since 1973. In
1988, along with his
best friend, he start-
ed MicroTools, which
specializes in creating
a variety of real-time
embedded sys tems.
With a combined em-
bedded systems experi-
ence base of more than
200 years, they love to
tackle impossible prob-
lems together. Bob has
been awarded 11 pat-
ents in many areas of
embedded systems and
motion control. You can
reach him at rjapenga@
microtoolsinc.com.

circuitcellar.com 57
CO

LU
M

NS

own niche. But you have to know what you
can do to take advantage of them—even if you
only know them—in thin slices.

My next article series will explore another
dimension of embedded Linux.

