
CIRCUIT CELLAR • FEBRUARY 2014 #28348
CO

LU
M

NS

M y house has too much stuff—especially
electronic junk. I have various electronic

gadgets that I just don’t throw away. I still
have the hard drive from my 1990 PC. It has
10 MB of data on it! Just recently, I was about
to throw away—I mean, recycle—a PCMCIA
Wi-Fi card. The built-in Wi-Fi on my wife’s
laptop recently stopped working. In 5 min. I
was able to get it working from my stash of
electronic “junk.” See, I am not a pack rat. I
am a supply chain warehouse!

Part of the reason I have so much
electronic junk is that as a culture we don’t
keep electronics very long. How long have
you had your cell phone? How long did you
keep your last cell phone? How about your
DVD player? Did you replace it with a Blu-
ray player? Those industries don’t have to
design their embedded systems to last more
than a few years. Yes, a Blu-ray player is an
embedded system that is probably running
Linux.

As embedded designers, we need to
create more things to last. In many cases,
the software we write and the hardware on
which it runs still needs to be running 10,
20, even 30 years from now. Of course we
know that deep-space systems need that kind
of lifetime. But is that true for the systems
we design? As more low-tech devices become
“connected,” consumers are not going to
want to swap out their toilet or furnace every
three to four years. My company is currently
working on a smart electric meter. When was
the last time you swapped out your electric
meter? They are supposed to last 30 years.

How can you make things last with
something as complex as a Linux flash

memory system? This article examines how to
do that. Although many things contribute to a
robust system, I will only discuss making the
flash memory system robust. That is why this
column is called “Embedded in Thin Slices.”

THE PROBLEM: DATA RETENTION
In the first article in this series, I mentioned

that most NAND flash devices are specified to
only retain data for 10 years. A 4-Gb SPI flash
we use specifies 20 years for data retention.
What this means is that, independent of the
wear-leveling issues I discussed in Part 1, if
you just write the data once to these devices,
you can only count on them to keep that data
for 10 or 20 years, respectively.

For the bulk of our systems, the file system
uses wear leveling (even on read-only data),
which greatly extends the data retention life
of these devices. It does this by constantly
moving data around the flash memory.
However, in one of our designs that should
last more than 20 years, there are three
other regions in our NAND flash memory
(called partitions) that are not part of the file
system and are usually never changed for the
products’s life. They are the bootstrap loader
(u-boot), the u-boot environment variables,
and the Linux kernel. Thus the data retention
problem is real for these partitions. In 10
years, these regions will start dying.

Some flash memory characteristics can
cause other errors that can prevent us from
creating a robust 24/7 long-life embedded
system. For example, both NAND and NOR
flash memory can exhibit an error called bit
flipping. This happens when a single bit is
reported as reversed or is actually reversed

Embedded File Systems (Part 3)
Designing Robust Flash Memory Systems
This is the third installment in a multi-part article series discussing Linux embedded file systems. This article
focuses on how to design robust flash memory file systems for embedded systems.

By Bob Japenga (USA)

EMBEDDED IN THIN SLICES

circuitcellar.com 49
CO

LU
M

NS

from the required state. I have already talked
about how flash memory has limited write/
erase cycles. In addition, flash memory can
wear out due to too many reads! I didn’t
know that until I dug deep into a Micron
Technology Technical Note (see Resources). In
most systems, this is not an issue because
flash data is usually seldom read. In the rare
case where you are designing a Linux system
that executes instructions directly out of the
flash memory or one that repetitively reads
data directly from the flash memory, you
should be aware of the fact that flash memory
wears out on reads as well as writes. Finally,
all flash memory devices now come from the
factory with bad blocks. The manufacturers
guarantee that the first block is not bad,
but after that, it is up to your flash memory
manager to handle these bad blocks.

SOLUTIONS
Fortunately, there are workable solutions

to each of these issues to extend a flash
memory system’s life. Applying error-
correcting code (ECC) is the first line of
defense and is widely used with flash devices.
In addition, a general redundancy is relatively
inexpensive to implement in hardware and
software if you plan for it up front. Let’s look
at each of these and see what we can learn.

ERROR-CORRECTING CODE
ECC is used to detect and correct errors.

One-bit ECC can detect and correct any
single-bit errors. This is useful for correcting
bit-flipping errors. Four-bit ECC can detect
and correct up to four bits of error in a single
page (typically 512 bytes). Both techniques
accomplish this by storing redundant data on
the page that enables it to restore the data to
its original value if a bit failure should occur.
Flash memory devices come with extra space
on each page to store ECC data.

Our company designed a major system
for a customer and missed the fact that
the flash chip required four-bit ECC while
the Linux kernel and u-boot for the chip
we were using only supported one-bit ECC.
After about two years and 20,000 units were
deployed, systems started failing. This was a
costly error that affected a large percentage
(relatively) of the fleet before we were able to
remotely update the software. Once four-bit
ECC was implemented, the failure rate went
basically to zero in our test lab.

We hope we see the same in the field. At
the time our product was released, neither
the Linux kernel nor the boot loader supported
four-bit ECC. Thankfully, by the time the
problem surfaced, these features were
supported in the kernel and in u-boot. Thus
we did not have to create these algorithms

FIGURE 1
This is the memory layout of memory regions required to bring up one of my company’s embedded Linux
designs with no redundancy.

FIGURE 2
This memory layout creates the most reliable design by providing redundant memory regions for the external
bootstrap, u-boot, u-boot’s environment, the kernel, and the file system.

ARM9 AT91SAM9G20B-CU 64-KB embedded ROM

Microloader

Adesto Technologies AT25DF041A 512-KB512-KB serial flash memory device

External bootstrap loader – chip select 4

Micron Technology MT48LC16M16A2P 512-MB NAND flash

u-boot
Partition 0

u-boot primary environment
Partition 1

Linux kernel
Partition 2

Root file system
Partition 3

ARM9 AT91SAM9G20B-CU 64-KB embedded ROM

Microloader

Adesto Technologies AT25DF041A 512-KB512-KB serial flash memory device

External bootstrap loader – chip select 4

Adesto Technologies AT25DF041A 512-KB512-KB serial flash memory device

Backup external bootstrap loader – chip select 5

Micron Technology MT48LC16M16A2P 512-MB NAND flash

u-boot
Partition 0

Backup u-boot
Partition 1

u-boot primary environment
Partition 2

u-boot backup environment
Partition 3

Linux kernel
Partition 4

Backup Linux kernel
Partition 5

Root file system
Partition 6

Backup root file system
Partition 7

CIRCUIT CELLAR • FEBRUARY 2014 #28350
CO

LU
M

NS

and write this code.
The moral of the story: Thoroughly read

all datasheets and their associated errata
for every device in your system. Know what
your OS does underneath you. Even if Linux
says: “We’ll take care of it for you.” Don’t
trust them! Tests run at the Jet Propulsion
Laboratory showed that without ECC, one-bit
errors started occurring at one fifth the life of
a particular memory device.

ECC can be supported in either software
or hardware if your processor and the OS
support this feature. The ARM ARM9 processor
we used on the previously mentioned product
only supports one-bit ECC and is not useful
with the memory chips we use.

REDUNDANT FLASH REGIONS
Before I describe a typical Linux system

with redundancy that we design, let me
describe how the system would start if it
didn’t have redundant flash regions. This
description applies to an ARM9 architecture.

Figure 1 shows different types of memory
and the roles they play at startup. The purple
memory is ROM stored in the ARM9. The
green memory is SPI flash memory stored
in an external chip. The blue memory is the
NAND flash memory stored in one or more
chips.

At power-up, the system runs a microloader
stored in ROM in the ARM9. This microloader
can load a bootstrap loader into internal SRAM
from any of several devices. Our system loads
the bootstrap loader from a 4-Gb SPI flash on
chip select 4. Once loaded, the microloader
starts the bootstrap loader running out of
internal static RAM (SRAM). The bootstrap

loader loads our Linux boot loader (u-boot)
from NAND flash Partition 0 into dynamic RAM
(DRAM). Once complete, it transfers control
to u-boot, which sets up the hardware as
specified in the configuration environment
block (stored in Partition 1 of the NAND flash).
It then loads the Linux kernel from another
NAND flash Partition (2) into DRAM. Control
is then transferred to the Linux kernel, which
mounts the file system in Partition 3 and then
starts the various threads from applications
stored on the file system.

There are two ways this can get you in
trouble. Since the data retention lifetime is
only 10 years for the NAND flash, Partitions
0–2 never get “wear leveled” and thus will
start “failing” after 10 years. The life of these
partitions can simply be extended by rewriting
the partition. Squirreling away copies of these
partitions (compressed or not) can enable the
system to occasionally (once per year) rewrite
them, which will dramatically extend the life
of these regions. In the end, you end up with
something like what is shown in Figure 2.
Here the microloader attempts to load the
bootstrap loader from chip select 4. If it fails
to load, it will load it from another SPI device
(yellow) on chip select 5. The loader, running
in internal RAM, will attempt to load and run
u-boot from either Partition 0 or Partition
1. Once running, u-boot will attempt to load
the configuration from either Partition 2 or
Partition 3. Finally, u-boot will attempt to load
the kernel from either Partition 4 or Partition
5. All of these features are built into the open-
source software for these packages.

Additional logic, which is not built into
Linux, requires you to check the file system’s
integrity at start up to a previously defined
“manifest” of CRC or MD5 sums for each file.
Should there be any issues, the shadow file
system partition (Partition 7) is mounted and
the damaged files corrected.

Building the logic into each of the loaders
to check data integrity and loading the
alternate partition can enable the design to
be even more robust than before. If one of
the partitions is corrupted for any reason,
the loader will choose the backup partition
(or device) to boot. Once loaded, Linux can
be flagged to rewrite the bad region. Out of
the box, Linux even provides a means to write
the bootstrap loader with a file image. This
scheme also provides power-down protection
for power outages that occur when the
partition is being written (since it is not being
used).

Since flash memory devices can cascade
failures (i.e., failures in one page can cause
failures in another page), the embedded
designer needs to keep that in mind when
designing a robust system. Sometimes this

circuitcellar.com/ccmaterials

RESOURCES
Y. Chen “Flash Memory Reli-
ability: NEPP 2008 Task Final
Report,” NASA Jet Propulsion
Laboratory, 2008.

B. Japenga, “Embedded File
Systems (Part 1): Linux File
Systems,” Circuit Cellar 279,
2013.

———, “Embedded File Systems
(Part 2): File System Integrity,”

Circuit Cellar 281, 2013.

Micron Technology, Inc., “NAND Flash Design
and Use Considerations Introduction,” Techni-
cal Note TN-29-17, Rev B 2010.

SOURCES
AT25DF041A 512-KB Serial interface flash
memory device
Adesto Technologies Corp. |
www.adestotech.com

ARM9 processor
ARM, Ltd. | www.arm.com

MT48LC16M16A2P single data rate synchro-
nous dynamic RAM
Micron Technology, Inc. | www.micron.com

circuitcellar.com 51
CO

LU
M

NS

ABOUT THE AUTHOR
Bob Japenga has been designing embedded systems since 1973. In 1988, along with his best friend,
he started MicroTools, which specializes in creating a variety of real-time embedded systems. With
a combined embedded systems experience base of more than 200 years, they love to tackle impos-
sible problems together. Bob has been awarded 11 patents in many areas of embedded systems
and motion control. You can reach him at rjapenga@microtoolsinc.com.

can be solved by keeping your redundant data
on a separate memory device rather than
just a separate partition. Without knowing
the physical layout of the chip, the designer
doesn’t know which partitions are physically
next to each other.

REDUNDANCY AND ERROR-
CORRECTING CODE

Some embedded systems are throwaways.
We have designed some systems that are
only run once. Other systems must last for
more than 10 years. Flash memory devices
are becoming more dense and less perfect.
Not long ago, memory device manufacturers
would not ship bad blocks in their devices.
Now the devices routinely have many bad
blocks. As embedded systems designers,
we need to be aware how our flash memory
systems work, what the failure modes are,
and how they need to be reliably interfaced.
Through redundancy and ECC you have added
two tricks to your playbook. But just a thin
slice!

Next time I will describe two alternate file
systems available under Linux: a compressed
ROM file system (cramfs) and a RAM file
system.

