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M y house has too much stuff—especially 
electronic junk. I have various electronic 

gadgets that I just don’t throw away. I still 
have the hard drive from my 1990 PC. It has 
10 MB of data on it! Just recently, I was about 
to throw away—I mean, recycle—a PCMCIA 
Wi-Fi card. The built-in Wi-Fi on my wife’s 
laptop recently stopped working. In 5 min. I 
was able to get it working from my stash of 
electronic “junk.” See, I am not a pack rat. I 
am a supply chain warehouse!

Part of the reason I have so much 
electronic junk is that as a culture we don’t 
keep electronics very long. How long have 
you had your cell phone? How long did you 
keep your last cell phone? How about your 
DVD player? Did you replace it with a Blu-
ray player? Those industries don’t have to 
design their embedded systems to last more 
than a few years. Yes, a Blu-ray player is an 
embedded system that is probably running 
Linux.

As embedded designers, we need to 
create more things to last. In many cases, 
the software we write and the hardware on 
which it runs still needs to be running 10, 
20, even 30 years from now. Of course we 
know that deep-space systems need that kind 
of lifetime. But is that true for the systems 
we design? As more low-tech devices become 
“connected,” consumers are not going to 
want to swap out their toilet or furnace every 
three to four years. My company is currently 
working on a smart electric meter. When was 
the last time you swapped out your electric 
meter? They are supposed to last 30 years.

How can you make things last with 
something as complex as a Linux flash 

memory system? This article examines how to 
do that. Although many things contribute to a 
robust system, I will only discuss making the 
flash memory system robust. That is why this 
column is called “Embedded in Thin Slices.”

THE PROBLEM: DATA RETENTION
In the first article in this series, I mentioned 

that most NAND flash devices are specified to 
only retain data for 10 years. A 4-Gb SPI flash 
we use specifies 20 years for data retention. 
What this means is that, independent of the 
wear-leveling issues I discussed in Part 1, if 
you just write the data once to these devices, 
you can only count on them to keep that data 
for 10 or 20 years, respectively.

For the bulk of our systems, the file system 
uses wear leveling (even on read-only data), 
which greatly extends the data retention life 
of these devices. It does this by constantly 
moving data around the flash memory. 
However, in one of our designs that should 
last more than 20 years, there are three 
other regions in our NAND flash memory 
(called partitions) that are not part of the file 
system and are usually never changed for the 
products’s life. They are the bootstrap loader 
(u-boot), the u-boot environment variables, 
and the Linux kernel. Thus the data retention 
problem is real for these partitions. In 10 
years, these regions will start dying. 

Some flash memory characteristics can 
cause other errors that can prevent us from 
creating a robust 24/7 long-life embedded 
system. For example, both NAND and NOR 
flash memory can exhibit an error called bit 
flipping. This happens when a single bit is 
reported as reversed or is actually reversed 
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from the required state. I have already talked 
about how flash memory has limited write/
erase cycles. In addition, flash memory can 
wear out due to too many reads! I didn’t 
know that until I dug deep into a Micron 
Technology Technical Note (see Resources). In 
most systems, this is not an issue because 
flash data is usually seldom read. In the rare 
case where you are designing a Linux system 
that executes instructions directly out of the 
flash memory or one that repetitively reads 
data directly from the flash memory, you 
should be aware of the fact that flash memory 
wears out on reads as well as writes. Finally, 
all flash memory devices now come from the 
factory with bad blocks. The manufacturers 
guarantee that the first block is not bad, 
but after that, it is up to your flash memory 
manager to handle these bad blocks.

SOLUTIONS
Fortunately, there are workable solutions 

to each of these issues to extend a flash 
memory system’s life. Applying error-
correcting code (ECC) is the first line of 
defense and is widely used with flash devices. 
In addition, a general redundancy is relatively 
inexpensive to implement in hardware and 
software if you plan for it up front. Let’s look 
at each of these and see what we can learn.

ERROR-CORRECTING CODE
ECC is used to detect and correct errors. 

One-bit ECC can detect and correct any 
single-bit errors. This is useful for correcting 
bit-flipping errors. Four-bit ECC can detect 
and correct up to four bits of error in a single 
page (typically 512 bytes). Both techniques 
accomplish this by storing redundant data on 
the page that enables it to restore the data to 
its original value if a bit failure should occur. 
Flash memory devices come with extra space 
on each page to store ECC data.

Our company designed a major system 
for a customer and missed the fact that 
the flash chip required four-bit ECC while 
the Linux kernel and u-boot for the chip 
we were using only supported one-bit ECC. 
After about two years and 20,000 units were 
deployed, systems started failing. This was a 
costly error that affected a large percentage 
(relatively) of the fleet before we were able to 
remotely update the software. Once four-bit 
ECC was implemented, the failure rate went 
basically to zero in our test lab.

We hope we see the same in the field. At 
the time our product was released, neither 
the Linux kernel nor the boot loader supported 
four-bit ECC. Thankfully, by the time the 
problem surfaced, these features were 
supported in the kernel and in u-boot. Thus 
we did not have to create these algorithms 

FIGURE 1
This is the memory layout of memory regions required to bring up one of my company’s embedded Linux 
designs with no redundancy.

FIGURE 2
This memory layout creates the most reliable design by providing redundant memory regions for the external 
bootstrap, u-boot, u-boot’s environment, the kernel, and the file system.
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and write this code.
The moral of the story: Thoroughly read 

all datasheets and their associated errata 
for every device in your system. Know what 
your OS does underneath you. Even if Linux 
says: “We’ll take care of it for you.” Don’t 
trust them! Tests run at the Jet Propulsion 
Laboratory showed that without ECC, one-bit 
errors started occurring at one fifth the life of 
a particular memory device. 

ECC can be supported in either software 
or hardware if your processor and the OS 
support this feature. The ARM ARM9 processor 
we used on the previously mentioned product 
only supports one-bit ECC and is not useful 
with the memory chips we use.

REDUNDANT FLASH REGIONS
Before I describe a typical Linux system 

with redundancy that we design, let me 
describe how the system would start if it 
didn’t have redundant flash regions. This 
description applies to an ARM9 architecture.

Figure 1 shows different types of memory 
and the roles they play at startup. The purple 
memory is ROM stored in the ARM9. The 
green memory is SPI flash memory stored 
in an external chip. The blue memory is the 
NAND flash memory stored in one or more 
chips. 

At power-up, the system runs a microloader 
stored in ROM in the ARM9. This microloader 
can load a bootstrap loader into internal SRAM 
from any of several devices. Our system loads 
the bootstrap loader from a 4-Gb SPI flash on 
chip select 4. Once loaded, the microloader 
starts the bootstrap loader running out of 
internal static RAM (SRAM). The bootstrap 

loader loads our Linux boot loader (u-boot) 
from NAND flash Partition 0 into dynamic RAM 
(DRAM). Once complete, it transfers control 
to u-boot, which sets up the hardware as 
specified in the configuration environment 
block (stored in Partition 1 of the NAND flash). 
It then loads the Linux kernel from another 
NAND flash Partition (2) into DRAM. Control 
is then transferred to the Linux kernel, which 
mounts the file system in Partition 3 and then 
starts the various threads from applications 
stored on the file system.

There are two ways this can get you in 
trouble. Since the data retention lifetime is 
only 10 years for the NAND flash, Partitions 
0–2 never get “wear leveled” and thus will 
start “failing” after 10 years. The life of these 
partitions can simply be extended by rewriting 
the partition. Squirreling away copies of these 
partitions (compressed or not) can enable the 
system to occasionally (once per year) rewrite 
them, which will dramatically extend the life 
of these regions. In the end, you end up with 
something like what is shown in Figure 2. 
Here the microloader attempts to load the 
bootstrap loader from chip select 4. If it fails 
to load, it will load it from another SPI device 
(yellow) on chip select 5. The loader, running 
in internal RAM, will attempt to load and run 
u-boot from either Partition 0 or Partition 
1. Once running, u-boot will attempt to load 
the configuration from either Partition 2 or 
Partition 3. Finally, u-boot will attempt to load 
the kernel from either Partition 4 or Partition 
5. All of these features are built into the open-
source software for these packages.

Additional logic, which is not built into 
Linux, requires you to check the file system’s 
integrity at start up to a previously defined 
“manifest” of CRC or MD5 sums for each file. 
Should there be any issues, the shadow file 
system partition (Partition 7) is mounted and 
the damaged files corrected.

Building the logic into each of the loaders 
to check data integrity and loading the 
alternate partition can enable the design to 
be even more robust than before. If one of 
the partitions is corrupted for any reason, 
the loader will choose the backup partition 
(or device) to boot. Once loaded, Linux can 
be flagged to rewrite the bad region. Out of 
the box, Linux even provides a means to write 
the bootstrap loader with a file image. This 
scheme also provides power-down protection 
for power outages that occur when the 
partition is being written (since it is not being 
used).

Since flash memory devices can cascade 
failures (i.e., failures in one page can cause 
failures in another page), the embedded 
designer needs to keep that in mind when 
designing a robust system. Sometimes this 
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can be solved by keeping your redundant data 
on a separate memory device rather than 
just a separate partition. Without knowing 
the physical layout of the chip, the designer 
doesn’t know which partitions are physically 
next to each other. 

REDUNDANCY AND ERROR-
CORRECTING CODE

Some embedded systems are throwaways. 
We have designed some systems that are 
only run once. Other systems must last for 
more than 10 years. Flash memory devices 
are becoming more dense and less perfect. 
Not long ago, memory device manufacturers 
would not ship bad blocks in their devices. 
Now the devices routinely have many bad 
blocks. As embedded systems designers, 
we need to be aware how our flash memory 
systems work, what the failure modes are, 
and how they need to be reliably interfaced. 
Through redundancy and ECC you have added 
two tricks to your playbook. But just a thin 
slice!

Next time I will describe two alternate file 
systems available under Linux: a compressed 
ROM file system (cramfs) and a RAM file 
system. 


