
CIRCUIT CELLAR • DECEMBER 2013 #28162
CO

LU
M

NS

In 1975, I was working on a PDP-11 system
that used the RT-11 file system. I noticed

that the disk access became slower over time.
You could issue the SQUeeze command to
the file system (all 2.5 MB of it), which would
resolve this problem. Of course, the command
took almost a day to complete.

PCs had a similar problem caused by disk
fragmentation that prompted many people

to buy a new PC when their
old one moved at a sluggish
pace. They thought it was worn
out. Instead the disk was just
fragmented. Disk fragmentation
happens any time one file’s data
is located in noncontiguous
physical locations on the disk.

Once when my dentist
complained about how slow his
PC had become, he asked me
for suggestions for a new PC.
I suggested he use a defrag
program instead of replacing
his PC. He was very grateful—
but he still drills me now and
again.

STRUCTURE MATTERS
Both problems were caused by the file

system’s architecture. File systems have a
physical disk structure that defines where
the data is stored in the physical media (hard
drive, floppy, USB stick, or flash drive). The
logical disk structure defines how files are
stored on the disk. The way in which the
design maps the logical disk structure to the
physical disk structure dramatically affects
any file system’s performance and reliability.
For example, neither the Macintosch file

system (after OS 10.2) nor Linux systems
need defragging. Both have file structures
that do not require this operation.

I bring this up because most people
are familiar with older Windows systems’
defragging requirements. Most don’t know
that this is not inherent in all file systems
but is due to a design decision about the
file system’s structure. The file system’s
structure can affect things such as robustness
over time, excessive disk space usage, and so
forth.

This brings us to another feature critical
to embedded systems: robustness across
unexpected power outages or system
crashes. If you are using a file system in
an embedded system, you don’t want it to
ever get corrupted across a power outage or
crash! Some file systems prevent this from
happening by requiring an orderly shutdown.
With embedded systems, you don’t want to
require an orderly shutdown to be performed
before you power down.

One embedded Linux single-board
computer (SBC) provider continues to provide
misinformation about this on its website. It
insists that embedded systems must provide
an orderly Linux shutdown to prevent data
corruption. Really? This depends on what
Linux file system you are using. Thus, it is
important for you as the designer to know
exactly what your file system can and cannot
do. Can it be powered down 10,000 times
without corrupting the data? One of the top
RTOS developers didn’t do this on a system
we designed and it required us to retrofit
thousands of devices already in the field with
a battery backup to prevent unrecoverable
data corruption following inadvertent loss of

Embedded File Systems
(Part 2)
File System Integrity
The first part of this article series introduced the topic of Linux embedded file
systems. This article discusses file system integrity across power outages and
system crashes and describes some integrity assurance solutions.

By Bob Japenga (USA)

EMBEDDED IN THIN SLICES

”Your file system’s archi-
tecture can affect whether
or not a file system’s integ-
rity can be guaranteed
across every power-down
scenario.”

circuitcellar.com 63
CO

LU
M

NS

power.
In the same way smart file system

architecture can eliminate the need for
defragging, your file system’s architecture
can affect whether or not a file system’s
integrity can be guaranteed across every
power-down scenario. Let’s start by looking
at the problem.

THE POWER-DOWN PROBLEM
Early on, when using SD cards and

compact flash in cameras and other devices,
many users discovered that the inexpensive
cards could get corrupted when removing
the card while writing to it. When the cards
became corrupted, you could lose all of your
data on the card.

Even today, my new Nikon camera has
strict warnings: Do not remove the card
while the access light is on. If you ever had
an SD card, compact flash, or memory stick
become corrupted and lose all of its data
(your pictures, songs, etc.), you know how
frustrating that can be.

Imagine putting this sticker on the
embedded medical device we designed to go
inside the human body: “Don’t remove power
without first performing an orderly shutdown.”
They would probably call for a medical orderly
after they shut me down. Embedded systems
usually cannot control when power is going to
be removed. And every system cannot be held
up long enough to provide time to perform an
orderly shutdown.

If all the information about a file could be
atomically written to one location in the file
system, powering down while writing to that
one location would be acceptable. Only the
most recent data would be lost. Other parts
of the file system would not be corrupted.

But real file systems don’t keep all of the
information about a file in one place. That
would make accessing the file very time
consuming. Imagine having to look across
every block of a terabyte drive trying to find
your unique file. As a minimum, file systems
usually create other information about the file
that they store in another place.

One example of this is directory
information, which tells the system where
the file is located. This makes finding your file
faster. File systems also want to store other
information such as who has permission to
read, write, delete, and append the file; who
owns the file; when the file was last modified;
when the file was created; when the file was
last accessed; and pointers to the media’s
physical blocks (hard drive or flash) where
the file is kept. This is called metadata. So
information about most files is contained in
at least two locations: the directory and the
file itself.

Therein lies the problem. If you write the
data successfully and then start updating
the directory when the power goes down,
you run the risk of corrupting the directory
entries for other files. This is unacceptable for
embedded systems. You want a file system
that can go through millions of shutdowns
during file writes and never corrupt either the
existing file being written or any other file in
the system.

THE SOLUTION
Journaling file systems came to the rescue.

The idea for such architecture was conceived
in the 1980s. IBM released the first journaling
file system in 1990, appropriately named JFS
(i.e., journaling file system). The
basic concept is that the file
system creates a journal entry
of all changes that are going to
be made when a file is written
or is changed. Thus, in case of
an incomplete operation, it can
quickly and easily back out the
last change. If the power goes
down or something causes
the software to crash, the file
system will not be corrupted
and it can quickly recover. The
file system can read the journal
to recover the system to the
point it was at just before the
write was commanded.

Some call journaling file
systems log-structured file
systems since the difference
between keeping a log and
keeping a journal is pretty
minute. It is beyond the scope
of this thin slice, but for
argument’s sake, let’s consider log-structured
file systems of the same ilk as journaling file
systems.

FLASH-BASED JFS ON LINUX
An embedded systems designer using

Linux has several choices to make when
selecting a file system. And the implications
can be significant. Explanations of some of the
journaling file systems we have used follows:

JFFS2—This has been the industry
benchmark for flash-based journaling file
systems since it was the first one introduced
into the mainstream Linux distribution. JFFS2
has compression built into its core. It also has
wear leveling built into the structure.

We have worked mostly with JFFS2. It
has several quirks we have discovered over
time. One is that, because of compression,
you cannot tell exactly how much disk space
you have left as you run low. For example, if
there is 1 MB of raw disk space left and you

”If you write the data
successful ly and then
start updating the direc-
tory when the power goes
down, you run the risk of
corrupting the directory
entries for other files.
This is unacceptable for
embedded systems.”

CIRCUIT CELLAR • DECEMBER 2013 #28164
CO

LU
M

NS

have 2 MB of data to write, can you commit
the write? You don’t know unless you know
the esoteric compression algorithm efficiency
on the particular data you want to write. We
have worked around this algorithmically but
it is nontrivial.

In addition, it can have a fairly long boot
time on large (i.e., greater than 32 MB)
flash drives. It also uses significantly more
RAM than the other options. For us, JFFS2’s
primary disadvantage is with larger flash
drives. We are not convinced it works well on
systems above 64 MB.

YAFFS2—In 1973, a friend of mine kept
going on and on about YACC (yet another
compiler compiler). I didn’t even know why
you needed a compiler to compile compiler
code! Around 2001, the YAFFS2 creators
reached back into that bit of history to create
YAFFS (yet another flash file system).

We are currently using YAFFS2 on one
system. Under our tests, it has proven to be
very robust across thousands of power failures
occurring during disk writes. According to
the Yaffs website, it has been crash tested
hundreds of thousands of times. Due to its
architecture, YAFFS2 boots up much more
quickly on large drives than JFFS2. YAFFS2
takes significantly longer to remove a file
than the other options. We have very limited
experience with quantities of these in the field
so talk to me in a few years. We “chose” it
because it came with the SBC we were using.

UBIFS—Considered the successor to
JFFS2 because it contains journaling and
compression, we seamlessly switched to
UBIFS once on a project when JFFS2 was
taking too long to boot. It reduced our boot
time by 30 s! In most benchmark tests, it is
faster than the other file systems in reads
and writes and average on file deletions. We
have had no problems using UBIFS. We have
hundreds of thousands of JFFS2 systems in
the field and comparatively few UBIFS. Again,

talk to me in a few years
LogFS—In 2010, yet another flash file

system (LogFS) was introduced into the
mainstream Linux distribution. One of the
problems with JFFS2 is that it keeps the inode
tree (think of this as metadata handling where
the logical blocks map to the physical blocks)
in RAM so it must create this every time you
boot. LogFS keeps this on disk. Clearly this
creates some performance degradation, but
we do not have any experience with this file
system.

WHICH JFS TO CHOOSE?
Some choices are made for you with the

hardware. Not all file systems work with all
the different kinds of flash. Sometimes you
design around a SBC with a flash file system
already installed. Yes you could change it—
but do you need to?

JFFS2 and UBIFS have built-in compression,
which may drive your decision if you are
concerned about how little disk space you
have. Some are of the school that newer
is better. Some like to stick with what they
know and has proven robust. We have had
just enough problems with JFFS2 that I tend
to favor working with a later design (e.g.,
UBIFS). Benchmarks on UBIFS look very good
(see Resources for more information).

CHOICES, CHOICES
As embedded systems designers, we

sometimes wish we could have fewer choices
in choosing a processor, a RTOS, a file system,
a development tool chain, and so forth. But
the fact remains that we do have many
choices.

Understanding the implications of the
choices will help us create more robust
systems. Choosing a flash file system for your
embedded Linux system is important.
Hopefully I have introduced you to some of
the options so that you can take this beyond
thin slices.

circuitcellar.com/ccmaterials

RESOURCES
eLinux.org, “Flash Filesystem Benchmarks 3.1.”

Yaffs, open-source file system, www.yaffs.net.

ABOUT THE AUTHOR
Bob Japenga has been designing embedded systems since 1973. In 1988, along with his best friend,
he started MicroTools, which specializes in creating a variety of real-time embedded systems. With
a combined embedded systems experience base of more than 200 years, they love to tackle impos-
sible problems together. Bob has been awarded 11 patents in many areas of embedded systems and
motion control. You can reach him at rjapenga@microtoolsinc.com.

