
CIRCUIT CELLAR • OCTOBER 2013 #27964
CO

LU
M

NS

EMBEDDED IN THIN SLICES

The closing installment of my article series
about concurrency in embedded systems

examined how files can be used in building
such systems. If you missed that article, you
may want to go back and read it.

Although you could build a Linux system
without a file system, most Linux systems
have some sort of file system. And there
are various types. There are file systems
that do not retain their data (volatile) across
power outages (i.e., RAM drives). There are
nonvolatile read-only file systems that cannot
be changed (e.g., CRAMFS). And there are
nonvolatile read/write file systems.

WHAT IS THIS ARTICLE SERIES
ABOUT?

Linux provides all three types of file
systems. This article series will address all of
them. Part 1 begins by looking at read/write
file systems that retain their data over a power
down. In particular, this article will examine
flash file systems. Although ruggedized hard
drives are available for use in embedded
systems, most embedded systems that have
file systems use flash file systems.

When using a flash file system, it is
important for the system designer to be aware
of some of the system’s limitations before
choosing to use it. This article addresses
two of the limitations to using a flash file
system and explains how to overcome these
restrictions. The next few articles will provide
more details every designer should be aware
of when using these flash file systems and
discuss the other two types of Linux file
systems.

FLASH FILE SYSTEMS
The embedded systems I designed in the

1970s used either ultraviolet (UV) erasable
memory or one-time programmable (OTP)
memory to store program and data. There
were no file systems. For UV erasable
memory, I would use a programmable read-
only memory (PROM) programmer to program
an erased memory chip. The previously
programmed memory chips would be erased
by placing the chip under a UV light. It usually
took about 30 min to erase a chip.

Around 1982, I worked on my first project
that had EEPROM (i.e., electrically erasable
PROM). The software could be programmed
without having to remove the memory chip.
I thought I was in heaven. This was a giant
breakthrough in developing embedded
systems.

The UV erasable memory process was
time consuming during development. Because
these early EEPROMs only had chip erase
capabilities and not individual byte or block
erase capabilities, it was difficult to design a
file system with such devices.

In 1980, Toshiba invented an electrically
programmable memory chip that could be
erased in blocks rather than requiring erasing
the entire chip. Because the erasure was so
fast, it was dubbed “flash,” and the name
stuck.

FLASH MEMORY TYPES
It was quickly evident that these flash

memories could be used to create nonvolatile
read/write file systems. However, the first
flash file systems were not developed until
the early 1990s, almost 10 years after the

File Systems in Embedded
Systems (Part 1)
Linux File Systems

This is the first installment in a multi-part article series about Linux file systems
for embedded systems. This article introduces the topic and plunges into some
important details about flash file systems.

By Bob Japenga (USA)

circuitcellar.com 65
CO

LU
M

NS

EMBEDDED IN THIN SLICES

technology was invented. In some ways, this
was because there are two major limitations
in the flash memory technology that affected
its use in a flash file system. This was partly
because there were different types of flash
memory: NAND and NOR. Table 1 provides a
comparison of the two technologies.

Internally, NOR flash connects the memory
cells in parallel, enabling random access
to a memory cell. This parallel connection
resembles a NOR gate’s structure. This is why
it is easy for you to execute your code directly
out of the flash.

NAND gets its name because of the serial
connection of the memory cells resembles the
structure of a NAND gate. NAND flash does not
permit random access. NAND’s much smaller
erase page size makes it look more like a
hard drive with blocks and sectors. Thus, it
is easier to create a file system out of NAND
flash.

That said, one of the first flash file systems
we designed used NOR. Also, booting a NOR
flash is much easier than booting a NAND
flash. Many systems mix NOR and NAND for
that reason. However, the remainder of this
article will concentrate on NAND flash memory
technology since it is primarily used in flash
file systems.

LIMITATIONS OF USING FLASH
MEMORY IN A FILE SYSTEM

There are several limitations when using
flash memory in a file system. The first
constraint is that data stored in flash memory
has a limited life (i.e., the flash memory will
retain the written data for a limited amount
of time).

The datasheet of a device we are using
in one of our most recent products specifies
10-year data retention. Even UV memories, if
not exposed to any UV, could retain data for
more than 200 years. Ten years is insufficient
for most of the embedded systems we build.
The first embedded system I designed using
UV memories was still running 25 years after
it was installed. Ten years of data retention
may be fine for a cell phone, but most of our
systems are required to last much longer
than 10 years.

The second limitation to flash memory
technology was that it had a limited number
of write/erase cycles before it “wore out.” The
two types of NAND flash memory—single-
level cell (SLC) and multi-level cell (MLC)—
have different impediments. MLC memories
have a memory cell that can store 2 bits of
information. SLC memories only store 1 bit
per cell. SLC chips are lower density and
have better performance and longer life. The
SLC flash memory used in our most recent
product is limited to 100,000 cycles. The

Toshiba 90-nm MLC memory chips are rated
at only 10,000 cycles.

The way in which the file system handles
repetitive writes to the same file is critical to
how long the memory will last. File systems
used on magnetic hard drives overwrote a
file in the exact same sector on the disk. This
would be unacceptable for a flash file system.

The first flash file system I used in the
1990s did not handle this, so we needed to
keep track of how many times we wrote a
particular file and then switched to a different
file after a fixed number of writes. For
example, if an application wrote to some file
at the same location every second, an MLC
chip would be worn out after 3 h. Before two
days expired, an SLC flash memory chip’s
memory cells would be worn out.

WEAR LEVELING
Wear leveling was developed to address

both of these limitations. Wear leveling
describes an algorithm that, when applied to
a flash memory, can dramatically level out the
number of writes to any given memory block
across the entire memory chip.

Simply put, imagine keeping a counter for
every block that is written. When a new block
needs to be written, the algorithm tells the
memory controller (software or hardware)
where to write the new block. It will write the
block in such a way that levels or equalizes
the number of writes.

After 10 years of use, all blocks should have
been erased approximately the same number
of times. The wear-leveling information is
stored on the chip in a region associated with
each page or block. With the current part we
use, there are 64 bytes reserved for every
2,048-byte page.

Most good wear-leveling algorithms do
this in a way that minimizes the need to
erase a “dirty” or already used block at the
time of the write. You don’t want to delay the
write. This means that wear leveling often
takes place in the background. The memory
controller (software or hardware) finds dirty

TABLE 1
Here is a comparison of NAND and
NOR flash memory technologies.

Type/Feature NAND NOR
Cost per bit Low High

Standby power Medium low Low

Active power Low Medium

Read speed Medium high High

Write speed High Low

Erase time Fast (typically 2 ms) Slow (900 ms)

Capacity High Low

Code execution Very difficult Easy

File system usage Easy Difficult

CIRCUIT CELLAR • OCTOBER 2013 #27966
CO

LU
M

NS

EMBEDDED IN THIN SLICES

blocks and erases them in the background.
Sometimes it finds blocks that are partially
“dirty” and moves the data to an unused
block and erases the rest. This is sometimes
called “garbage collection.”

Not all wear-leveling algorithms are created
equal. In 2005, we used a file system on an
embedded system that utilized an abysmal
wear-leveling algorithm. When you would
least expect it (running in the background), it
would take over the file system and lock out
all disk accesses while it prepared for the next
write! And it would do this for 2 to 3 s!

The RTOS supplier refused to fix this. The
wear-leveling algorithm was developed by
a big-name RTOS supplier that claimed its
OS was DO-178B certified (i.e., it was flight-
worthy for flight-critical software). Hence,
this became the primary motivator for us and
our customer to turn to Linux. We could only
imagine a pilot attempting to take corrective
action and the system locking out all flash file
access. To make the system robust, we finally
had to create a mirror drive in RAM that was
periodically written to flash in a non-time-
critical fashion and add battery backup to the
system.

HOW DOES WEAR LEVELING
ADDRESS A FLASH FILE
SYSTEM’S LIMITATIONS?

Obviously, by keeping track of the number
of writes to every block in the system and
writing to those blocks with the lowest write
cycle, the flash can be easily optimized for
wear. As a designer, you need to be careful
about the literature that tells you that 10,000
life erase cycles is sufficient for use in your
system. The literature says that 10,000
erase cycles would enable you to erase your
complete USB stick once per day for 27 years.
Therefore, you may think your system will
be fine for the 10 to 15 years needed. Your
system doesn’t write the entire memory
space every day. You only write a log file or a
status file once per second.

Let’s do the math on that. Imagine you
write a small 8-Kb file every second. Because
of wear leveling, the wear-leveling manager
will keep moving that 8-Kb block to a new
position every second. Furthermore, imagine
your system has 64 MB of memory. At the end
of the day, you will have written your entire
memory space and you will have a 27-year
life cycle. But if you are writing a 24-Kb file,
that lifetime drops to nine years. And, if you
are writing twice a second, the lifetime is 4.5
years. These are not ivory tower examples.
We have several systems that are recording
data 10 times a second and some that are
logging data once per second.

The way in which wear leveling addresses

the data retention limitation is a little trickier.
In fact, not all wear-leveling algorithms
address the data retention limitation. There
are basically two types of wear-leveling
algorithms: static and dynamic.

A dynamic wear-leveling algorithm only
wear levels dynamic data. For example, if
your 64-MB flash disk used 32 MB for the
OS and 32 MB for dynamic data, only the
dynamic portion would be wear leveled. This
means that at the end of the flash’s life, the 32
MB of data would be worn out and the 32 MB
of program will be like new.

A static algorithm wear levels both
dynamic and static data. This solves two
problems. First, it uses all 64 MB of data (in
our example) to level off the erase cycles. In
addition, there are no data retention issues
since every block gets rewritten thousands of
times throughout its life.

We use static wear leveling in all our Linux
systems. As a designer, you need to be aware
that this is going on in the background. A
software bug (like we found in JFFS2 used in
version 2.6.12) can cause files that are read-
only from the OS’s perspective to be corrupted.
Until we understood wear leveling (at least
in these thin slices), we were scratching
our heads as to how this could happen. It
happened because read-only files are getting
moved as part of the static wear-leveling
algorithm. And the software contained a bug
that occasionally did not properly copy these
read-only files.

UBIQUITOUS FLASH FILE
SYSTEMS

The moral of the story is that if you
are a good designer, you understand the
limitations of the devices in your systems.
Flash file systems are everywhere in
embedded systems. As designers, we need to
understand the options to make wise choices
going forward.

Knowing about the flash file systems’
limitations and how they are corrected in
software is important for anyone who designs
robust embedded systems. In Part 2, I’ll dig a
little deeper into flash file systems and discuss
power outage protection.

circuitcellar.com 67
CO

LU
M

NS

EMBEDDED IN THIN SLICES

RESOURCE
B. Japenga, “Concurrency in Embedded Systems

(Part 8): Using Files in Concurrent Linux Designs,”

Circuit Cellar 277, 2013.

ABOUT THE AUTHOR
Bob Japenga has been designing embedded systems since 1973. In 1988, along with his best friend,
he started MicroTools, which specializes in creating a variety of real-time embedded systems. With
a combined embedded systems experience base of more than 200 years, they love to tackle impos-
sible problems together. Bob has been awarded 11 patents in many areas of embedded systems and
motion control. You can reach him at rjapenga@microtoolsinc.com.

circuitcellar.com/articlematerials

