
CIRCUIT CELLAR • APRIL 2015 #29760
CO

LU
M

NS

“People who spend their time, and earn
their living, studying a particular topic

produce poorer predictions than dart-
throwing monkeys.” This quote from a Nobel
prize winner who knows his stuff is a jarring
introduction to our final installment in our
article series dealing with estimating the
cost and schedule of our embedded software
systems. Is this whole process of software
estimation no better than what dart-throwing
monkeys could come up with? In the opening
article, I said that accurate estimating is
extremely difficult. But I also said that there is
some hope. This month I would like to provide
some thin slices of help for anyone who is
asked to estimate how many man hours it will
take to create an embedded system or even
a part of an embedded system. And the help
will come from the author of that quote.

Daniel Kahneman is a psychologist who
won the Nobel Prize in Economics in 2002.
The above quote is taken from his 2012
book entitled Thinking, Fast and Slow, which
summarizes his decades of research on the
psychology of judgment, decision-making,
and behavioral economics. Kahneman has

provided some key insights into how we
approach the impossible task of estimating
costs of developing embedded software
systems.

This article will not delve into function
points, use-case points, software metrics,
COCOMO models, SEER-SEM, or any of the
other methods for estimating software.
These are good, useful, and well documented
in the literature. We use function points,
use-case points and software metrics in
our company. I would heartily recommend
that you understand function points, use-
case points, and develop software metrics.
In particular, develop software metrics that
relate to your experience of function points
or use-case points. In other words, count the
function points or use-case points during the
estimation phase of three to four projects
and see what you learn about yourself, your
estimating process, and your projects. Go
back to completed projects and determine the
number of function points or use-case points
and factor that into a metric.

What I want to do this month is to look
at estimating from 5,000′. I want to see how

EMBEDDED IN THIN SLICES

Bob concludes his series on estimating the costs for designing and developing
your embedded systems project. He looks at four heuristics and how by knowing
them you can get better at this task.

By Bob Japenga (US)

Estimating Your Embedded
Systems Project (Part 3)
Four Heuristics for Embedded Software Development

circuitcellar.com 61
CO

LU
M

NS

Kahneman’s research can help us become
better at estimating software. The stated
purpose of his book was, in his words,
to “learn to recognize situations in which
mistakes are likely and try harder to avoid
significant mistakes when stakes are high.”
If we can glean that from his book, we will
become better at estimating the costs of
embedded software systems.

Kahneman proposes almost 50 heuristics
in his book. A heuristic is a method or process
that enables us to learn something on our
own. Only a few of them are applicable to us
in estimating software. But if we can master
them, they will enable us to become better at
estimating embedded software.

PRIMING
Sometimes one of our customers will

tell us that a project needs to be completed
in three months. Or that it needs to be
completed for under $15,000. These numbers
can have a very bad effect on our ability to
accurately estimate a software project. I
am amazed how often my estimate closely
parallels the customer’s estimate. Can it be
that the customer really knows how long it is
going to take or how much it is going to cost?
Or is something else going on?

A heuristic discussed by Kahneman in
his book is called priming. He and other
researchers have demonstrated that our
behavior can be primed by what goes
immediately before us. For example, he
sites one study, where two groups of young
people (aged 18–22) were asked to form
some sentences from a set of five words.
One group had a set of five words associated
with the elderly. After the exercise, the young
people were asked to walk through a corridor.
Those who worked with words about the
elderly walked slower than the other group!
Experiments like this have been repeated
many times with a wide variety of different
priming mechanisms. The evidence seems
to indicate that we are deeply influenced by
priming.

How are we to use this knowledge about
ourselves to become better at estimating?
First, as much as possible, we need to avoid
obtaining from our customer or bosses
expected costs and schedule before we make
our estimates. Estimating is difficult and I
really want to know what the customer or my
boss expects me to estimate. But resist the
urge. Priming is a powerful and proven effect
and we must avoid it as much as possible.
Watch out when your boss tells you that he
needs this in two weeks and then asks you to
estimate it.

If however, the cat is out of the bag, we
need to make an extra effort to not let that

number influence us. This is by far the harder
of the two options. Once primed, even when
I take herculean strides to not be influenced,
the priming has its effect. But at least I am
aware of the effect. Develop your estimate
with your usual method of function points or
use-case points or whatever, and if it comes
in the same ball park as the “primed” number,
be wary of your numbers and extra-vigilant—
run your numbers again.

ANCHORING EFFECT
I have noticed that a lot of my estimates

seem to be remarkably similar to previous
estimates. Could it be that my projects are so
similar that it always takes 40 hours to write
the software specification for all projects? Or
that user interface designs always take 160
man hours. Or is something else at work?

One of the heuristics Kahneman has
identified is what he calls the anchoring effect.
The anchoring effect “occurs when people
consider a particular value for an unknown
quantity before estimating that quantity.”
With serious academic rigor, Kahneman
demonstrates how we are influenced by
previous numbers. For example, he tells us
that if we were asked if we thought that Gandhi
was 114 years old when he died, we would
immediately say “No.” If we were then asked
how old we thought he was when he died, our
number would be higher than if we were first
asked if we thought Gandhi was 35 years old
when he died. That first number acts as an
anchor to pull our estimate in its direction.
Kahneman’s claims that this phenomenon is
“one of the most reliable and robust results of
experimental psychology: the estimates stay
close to the number that people considered
[previous]—hence the image of an anchor.”
This means that we will be affected by it when
we do our estimating.

Anchoring is closely related to priming.
I would make the distinction that priming
involves numbers related to the estimate (the
customer’s estimate for the same project).
Anchoring happens when I take numbers
from an unrelated project into account before
I make my estimate.

How can we take this knowledge and
become better at estimating? Here is where
software metrics come into play. Look back
over the last several estimates of unrelated
projects. Were the estimates similar to each
other? How did the actuals compare to the
estimates? If you see a correlation with the
estimates but not in the actuals, anchoring is
a possible cause. Develop a range of estimates
based on actuals and use these when making
a new estimate. For example, imagine that
the user interface took 120 hours on project
A, 130 hours on project B, and 250 hours on

CIRCUIT CELLAR • APRIL 2015 #29762
CO

LU
M

NS

project C. Attempt to identify the similarities
and the differences and place a weighted value
to each. How many menu items or screens
were involved? Was it a graphical interface?
Was a working driver provided? Was it a touch
screen or keypad or both?

To avoid the anchoring effect on new
estimates, we need to ruthlessly dissect
previous projects into their subcomponents
using software metrics. In other words,
keep track of how long it took to write the
specification, design the user interface,
design the manufacturing test fixture, etc.
Then when we approach a new project we
need to make a quantitative comparison
between the smaller elements. For example,
the user interface is about twice as complex
as project B and half as complex as project C.
This quantitative approach can help us avoid
the anchoring effect.

OPTIMISTIC BIAS
Kahneman describes many biases that

affect our ability to estimate. He posits that the
optimistic bias may be the most significant. In
my earlier articles in this series, I discussed
optimism as it relates to estimating but it
bears repeating. I would recommend reading
chapters 23 and 24 of Kahneman’s book in an
attempt to hammer home how pervasive this
heuristic is and learn to make adjustments.

How do we counter this optimistic bias?
I would say that a thorough knowledge of
our optimistic bias is a good start. Software
metrics can help if you develop actual
numbers and then compare them to your
estimates during a post-mortem. But human
nature such as it is, unless we learn to
develop a sort of “humility before the data”
we can ignore the stubborn facts the metrics
show us. A simple mantra that could be said
after you have completed your estimate and
before you submit it, is to repeat these words:
All evidence shows that I am repeatedly over
optimistic in what I think I can do. How should
this estimate change based on that?

SMALL SAMPLE SIZE
We all know that using a small sample of

data sets us up for errors in estimating or
drawing conclusions. But Kahneman takes us
to a new level of awareness of the danger of

using small samples. For example he cites
a study of the incidence of kidney cancer
in 3,141 counties in the United States. The
counties with the lowest incidence per capita
are “mostly rural, sparsely populated, and
located … in the Midwest, the South and
the West.” Upon hearing this, most of us
immediately start jumping to conclusions. But
he goes on to also state that counties with the
highest incidence per capita are also mostly
rural, sparsely populated, and located in the
Midwest, the South and the West. I leave it
to you to figure out why sample size is the
reason for this apparent contradiction. Email
me if you want some help.

In using our software metrics to estimate
embedded software systems, we have to
recognize that we have an extremely small
sample size that we are drawing upon. I
have been in this business since 1973. I have
estimated almost a 1,000 such projects.
Yet even with all that experience, that is an
extremely small sample to accurately predict
how the next project is going to go.

So what can be done in light of this last
heuristic? I recommend that you doggedly
pursue from other companies the results
of actual projects. Most companies are not
willing to part with this information. But I
have found that it doesn’t hurt to ask. In
non-competing situations, we can learn a lot
as we expand our sample. There are a lot of
numbers floating around the web. Take the
time to create your own data base of “the
other guy’s” actual development time.

On one project, we had expended an
immense amount over our original estimates.
After the project we found that another
company designed a very similar product and
took 2× to 3× as much calendar time and cost.
Had we had that number in the beginning, we
may have been more accurate in our original
estimates.

Although your environment is unique to
you and your company, industry standard
metrics like hours/line of code and hours/
function point or hours/use-case point can
help expand your sample. These metrics are
prone to many errors and are widely variable.
Nonetheless they are another data point for
your estimate. They help us limited engineers
do the impossible: expand our sample without
actually doing the work.

HOW ACCURATE?
Accurately estimating embedded software

systems is impossible. Don’t let anyone tell
you otherwise. Hopefully, with some input
from this series, you will become a little
better at it than you were before. And that is
no small accomplishment. It is with some
reluctance that I close this article series since circuitcellar.com/ccmaterials

ABOUT THE AUTHOR
Bob Japenga has been
designing embedded
systems since 1973. In
1988, along with his best
friend, he started Micro-
Tools, which specializes
in creating a variety of
real-time embedded sys-
tems. With a combined
embedded systems ex-
perience base of more
than 200 years, they
love to tackle impossible
problems together. Bob
has been awarded 11
patents in many areas of
embedded systems and
motion control. You can
reach him at rjapenga@
microtoolsinc.com.

RESOURCES
D. Kahneman, Thinking, Fast and Slow, Farrar,
Straus, and Giroux, New York, NY, 2012.

circuitcellar.com 63
CO

LU
M

NS

I know that I have taken a very thin slice of a
very big topic. Email me if you would like me
to elaborate more fully on any of these topics
in the coming months.

