
CIRCUIT CELLAR • FEBRUARY 2015 #29552
CO

LU
M

NS

Recently, we were asked to estimate the
cost to develop a system that would

interface with every device of a particular type
manufactured in a particular country. Our job
was to design a system to extract data from
these devices. There are 10 international
standards applicable to these devices in
this country. These standards define the
protocol for accessing this data. The data is
available on one of three possible hardware
data busses. Some of the data available on
these busses is in the public domain and
some is only available from the manufacturer.
There are over 150 different types of these
devices sold each year in this country. Each
year, another 150 new or similar types are
sold. The specification is perfectly clear. By
the way, can you have the estimate to me
by Monday? Hmmm! I saw an advertisement
the other day that said a company’s one-
day seminar would teach me to accurately
estimate firmware schedules. Maybe if I took
that class on Friday, I could get the accurate
schedule by the end of business on Monday.

How can one estimate something like this?
Here is axiom number one: Don’t believe

anyone who tells you he can teach you to
accurately estimate your firmware schedule in
a one-day seminar. Or in a one week seminar.
Or even after 10 years of doing it every day.
Accurate? No! But we can get better. And the
best way I know how is by first defining the
problems. That has been the focus of these
first to articles in our series.

Last time, we looked at the general problem
of estimating software development costs.
This month we will look at the challenges
that are unique to embedded software
development. Certainly there are things that
make embedded software more challenging
to develop than other types of software. But
what makes embedded software that much
harder to estimate?

BIGGER SURFACE AREA
Recently, I reviewed last month’s article

with our team and asked the question: Why is
estimating embedded systems more difficult
than estimating other kinds of software? One
engineer said, “The surface area is much
bigger.” What he was saying is that all of the
standard problems with estimating just got

EMBEDDED IN THIN SLICES

This month we continue our series on estimating the costs for designing and
developing your embedded systems project. Bob covers the issues unique to
estimating an embedded systems project.

By Bob Japenga (US)

Estimating Your Embedded
System’s Project (Part 2)
Challenges Unique to Embedded Software
Development

circuitcellar.com 53
CO

LU
M

NS

multiplied. Let’s just review what we said last
time and see how some of these issues are
more complicated for embedded systems.

UNCLEAR REQUIREMENTS
The accuracy of our software estimates

can only be as good as our understanding of
the requirements. This difficulty is multiplied
with embedded systems because of the
complexity of the interfaces. In addition, there
are a lot of requirements that only become
clear after you implement. The datasheet
of a small microprocessor we use on one
project is 1,400 pages long. There are just
a lot more requirements that can be unclear
or misunderstood. We approved a rework
once to one of our designs that required the
manufacturer to add a wire to one end of a
capacitor. After the first few thousand were
shipped, the capacitors started shorting
(especially problematic for bypass capacitors).
Buried in the capacitor’s datasheet was the
requirement to not touch the capacitor with
a soldiering iron. The rework needed to be
performed with a hot air process. It was very
clear on page 78 of the capacitor’s datasheet!

The specifications can also be wrong. Many
times errata come out after you have started
your design. We once missed an errata in
an 800-page microprocessor datasheet that
said, “Oh, by the way, this device has a 256-
MB address range but can only address 16 MB
of NOR flash!”

THAT ELUSIVE BUG
Embedded real-time systems and systems

with concurrency make debugging much
more difficult. That we can plan for. But those
elusive bugs that take two weeks in non-
embedded systems can take two months on
embedded systems because your tools are
not as powerful and the complexity of the
design is that much greater.

HIDDEN COMPLEXITY
The scale of complexity is greatly

multiplied in embedded systems. We are
supposed to write software that interfaces
with other very complex devices. Take this
simple requirement from a datasheet of
chip we interface with: “To reset the chip,
hold RESET_N low for 300–500 ms.” On the
surface that seems straightforward. But what
is hidden and not written in the manual is
that if the RESET_N is held low for more than
1,000 ms, the chip powers down and will not
start when the RESET_N line is brought high.
If for some reason your function that releases
RESET_N gets delayed, the chip would not
become operational as you expected.This
requirement of raising RESET_N becomes a
hard deadline that you might not expect to

be as such.These kinds of hidden complexities
are legion in embedded systems.

PROGRAMMER EFFICIENCY
Two years ago, I sat with one of the best

embedded designers I know. He was running
out of real time on a project. The problems
were so complex that it took two of us
with a combined experience of 60 years of
designing embedded systems to figure out
what was going on and how to fix it. Where
a less-efficient programmer might be four
times less efficient than your best designer,
in an embedded environment that same
programmer might be 10 times less efficient.

OPTIMISM & HUBRIS
A couple months ago, one of our customers

asked us to add a splash screen and a
progress bar to the start of a device. One
of our best designers saw that u-boot had
hooks for sending an image to our display.
Linux had a progress bar app (psplash) that
worked with our display. (If you want to
have an open-source progress bar for Linux
(psplash), check out the Yocto project’s
distribution http://git.yoctoproject.org/cgit/
cgit.cgi/psplash/tree/.) The system was built
on a BeagleBone architecture so others must
have done this before. The on-line community
support for this architecture is huge. We
knew we could get lots of help. In addition,
we have done similar projects in about four
days without this kind of support. We know
how to do this. We can deliver this fully tested
in four days. (The BeagleBone open source
reference design is showing up in the designs
of a number of companies. You can find more
about it at http://beagleboard.org/.)

At the end of four days, we found that the
hooks in u-boot didn’t work. No one in the
online community knew how to make them
work. At the end of two weeks, we discovered
that the u-boot image was inverted from
what the Linux driver was expecting. At
the end of four weeks, we discovered that
the progress bar did not play well with this
particular display. At the end of six weeks, we
discovered that the customer did not provide
us with the right code base to start with.
We were optimistic. Embedded systems will
amplify the negative effects of your optimism
and hubris enough to put you out of business.
(The u-boot open-source universal bootloader
software has been at the start of every
Linux project we have designed.You can find
more about it at www.denx.de/wiki/U-Boot/
WebHome.)

CUSTOMER SCHEDULE CREEP
Customer schedule creep is a specific

instance of “The Other Guy” problem we

CIRCUIT CELLAR • FEBRUARY 2015 #29554
CO

LU
M

NS

talked about last time. But it has a unique
feature to it. We are now six months behind
schedule releasing a new version of embedded
software for a product we designed for a
customer. One of the driving factors in the
delay is that the customer still doesn’t have
their portion of their web server operational.
Every day it slips, our team has to work
on other things instead of completing the
testing. Each day the team might spend a half
hour coordinating with the customer. None of
this 60 hours was estimated. The inefficiency
of this schedule creep is even more costly.
Fred Brooks in The Mythical Man-Month puts
it this way: “Disaster is due to termites, not
tornadoes.”

Some of this is common to non-embedded
software. But embedded software by its
very nature is embedded in stuff. And often,
stuff that is being designed in parallel. As a
minimum, it must talk with hardware that
is often not completely designed. It may
also talk with other machines that are being
developed in parallel. How well those are
designed and when they are delivered can
be a multiplier in the schedule and cost of an
embedded system.

PARTNER QUALITY
Another instance of “The Other Guy”

problem is with your partners. Some of the
partners we interface with are the hardware
we run on, the busses we communicate
on, the networks we connect to, the other
devices we talk to, the hardware designer
who designed our board, the hardware layout
team that laid out the PCB, and the hardware
build team that actually built the board. How
well they do their job has a direct bearing
on how much it will cost you to develop your
embedded system.

Let me share two examples. We have a
supplier who builds our printed circuit boards
and assembles them during our development
stage. We love this supplier because their
work is impeccable. Sometimes our customers

require us to get the boards built someplace
else or by them. Invariably, parts are put in
backwards. Ball Grid Arrays (BGA) parts are
not X-rayed to verify their connections. Flow
soldering techniques cause modules to reflow
and not re-center on their footprint. When we
get the boards, it might take us two to three
days more to debug and troubleshoot these
problems because of the supplier. Remember
that we are checking out a new design which
can have flaws in it as well. How does one
estimate for that extra two to three days? You
don’t know the quality of that supplier until
you have used them.

Another problem we have is with other
hardware designers. When we design the
boards, we know the quality factor of our
designers. They may not be perfect, but they
are a known quantity. We know by experience
how long it will take to integrate the boards
designed by our own people because we have
metrics and experience. But what if you are
designing embedded software that runs on a
board that is designed by “the other guy?”
Our experience shows that it can ruin a
schedule in two ways. The first is the extra
time it takes to “bring the board up” because
there are more errors in the design than you
are used to. This can easily add several weeks
to a schedule. But often we find that it takes
more turns of the board than it normally
takes you to get an operational board. During
that extra two to three weeks, your team is
much less efficient. Do you assign them to
a new project? That is not practical. So the
software team becomes less efficient. They
work on “cleaning up the code” and “doing
some documentation.” Sounds good, but
these are schedule killers. And for estimating,
the problem is: how do you know the quality
factor in advance?

TESTING DIFFICULTIES
Embedded systems are much more

difficult to test than conventional software
systems. That additional difficulty can be
planned for and the estimate adjusted to take
that into account. The problem comes when
we don’t think through these difficulties when
we estimate the project. We developed a tiny
embedded device that was implanted into a
human body. This device communicated to
the outside world via infrared. The device
sent 8 bytes every millisecond. We accurately
estimated the time it would take to design
the hardware and the software necessary
to accomplish these requirements. However,
when it came to test it, we did not have a
means to easily do that. There were no off-
the-shelf tools to read the IrDA and provide
an integrity check to it. How does one know
that all 8,000 bytes are correct every second?

ABOUT THE AUTHOR
Bob Japenga has been designing embedded
systems since 1973. In 1988, along with his
best friend, he started MicroTools, which spe-
cializes in creating a variety of real-time em-
bedded systems. With a combined embedded
systems experience base of more than 200
years, they love to tackle impossible problems
together. Bob has been awarded 11 patents in
many areas of embedded systems and motion
control. You can reach him at rjapenga@mi-
crotoolsinc.com.

circuitcellar.com 55
CO

LU
M

NS

A special test tool was needed to display and
analyze that it was meeting its requirements.
But special test tools take time and money to
design. They can drastically expand the effort
required to design and develop an embedded
system.

Another thing that can affect our ability
to estimate embedded system is the time
delay inherent in many designs between
making a change, testing the change and
reprogramming the device. When the time
delay is very small (as in non-embedded
systems), iterative designs can be created
much more quickly. Where this impacts our
estimates is that we often don’t know what
the time delay is and exactly how it will impact
the schedule. For example, let’s imagine that
over the course of the project you make 1,200
changes to your software requiring a compile
and load. If the compile and load time takes
70 s compared to 10 s, this can add three
extra days to your project. Often, during the
time we estimate, we don’t know with that
precision the compile and load time.

FACE THE IMPOSSIBLE
The surface area of complexity in

estimating embedded systems is many times
more complex than designing non-embedded
software. Knowing what some of the problems
are can help us get better at this impossible
task. Next time, we will look at how we can
address these problems and get a little better.
If you have some other suggestions about the
problems in estimating embedded software
systems and how you deal with them, drop
me a line. This is a field in which I need
constant improvement. And of course, I only
improve in thin slices.

