
CIRCUIT CELLAR • DECEMBER 2014 #29348
CO

LU
M

NS

This morning at our 8:30 AM staff meeting,
I asked one of the project leads if we were

still planning on shipping a software update
for an embedded system by 11:00 AM. In
essence he reported that barring the sky
falling or the final test failing, it should be
released. The release was shipped at 11:14
AM. His response reflected the challenge we
all face in making estimates for completing
tasks we are assigned.

Accurately estimating my arrival time
for dinner can be challenging. Accurately
estimating embedded software development
is almost impossible. Don’t let anyone fool
you into thinking that this is achievable in
the real world. But we are not without hope.
This article begins a three-part series on
estimating embedded software systems.
This month we will look at some of the
general problems associated with estimating
software development. In the next article,
we will look at specific problems unique to
embedded software development. We will
close out the series discussing what we can
do to continuously improve our estimating
skills.

Learning how to estimate the time
and dollar cost of designing an embedded
system is very important to our business.
We make our living by designing and building
embedded systems for other people. We do

this as fixed-priced projects. We live and die
by our estimates. Perhaps we are like one of
Nassim Taleb’s black swans and the fact that
we are still in business is just a statistical
anomaly. But I think we have learned enough
about estimating that, as imperfect as it is,
we are able to estimate accurately enough
to stay in business. Learning to estimate the
time it takes to design embedded systems
may not be that critical to you staying in
business, but it is an important skill even if
you work for someone else. Let’s dive in by
trying to identify some of the problems.

THE GENERAL PROBLEM
Asking you to estimate software

development time is like asking you to
estimate the number of pens I have in my
desk. You could probably bound the problem
on the lower side. “Well it is not less than
zero.” You could probably put an upper
bound on it based on the estimated size of
the average desk drawer and the size of an
average pen. You could probably assign some
reasonableness factors to it. “Bob would
not have 1,000 pens in his desk.” But how
accurate can you be with so little information?

In software, without actually doing the
design, you are working with even less data
when you estimate. Software systems are the
most complex things we design on the planet.

EMBEDDED IN THIN SLICES

This month, Bob begins a new series about estimating the costs for designing
and developing an embedded systems project. He starts by looking at the
challenges you’ll face when estimating software projects.

By Bob Japenga (US)

Estimating Your Embedded
System’s Project (Part 1)
The Challenges of Estimating Software Projects

circuitcellar.com 49
CO

LU
M

NS

And the complexity increases exponentially as
the systems get bigger. So our first axiom is
that estimating the cost to develop software
is extremely difficult.

As engineers we are well aware of an old
axiom when applied to electronic systems
design: “You cannot control what you don’t
measure.”

If you are asked to control the
temperature of a room but cannot measure
the temperature you will fail. Tom DeMarco,
in his book Controlling Software Projects,
applied this well-worn chestnut to software
estimating. It was 1983. He introduced me
to the concept of software metrics. Unless
I was measuring what it actually took to
design and develop software, I would not be
able to estimate what it would take to design
and develop my next project. This was a
pivotal step in my professional growth. Two
of the major points of his book were that
we poorly estimate software development
time because: we don’t develop estimating
expertise and we don’t base our estimates on
past performance. I set out to correct that. I
wanted to develop expertise in estimating. I
wanted to understand past performance.

With DeMarco’s principles as my mentor,
over the next seven years, my organization
generated all kinds of metrics (some of which
we will touch on in the last article) and used
them in estimating software development
costs. But there was a problem. After all that,
I wasn’t getting any better at estimating even
though I had a lot of data. I developed my
own corollary to DeMarco’s axiom: “And even
if you do measure it, it doesn’t mean you can
control it.”

I needed a new mentor. I found one in
W. Edwards Deming, who arguably was the
father of statistical quality control who is
credited with single handedly bringing Japan’s
economy out of its World War II disaster to
become the third largest economy in the
world. Concerning quality control, he taught
that: “The most important things cannot be
measured.”

I began to perform post-mortems on
projects (a highly desirable practice for
anyone who wants to continue to improve
their software development process—
including estimating). I tried to understand
where the estimate went wrong. I had lots of
examples. What I found was that Deming was
correct and that the things that were sinking
the schedules and making the estimates look
bad were, for the most part were things I
could not measure.

Deming was also famous for saying that in
quality control: “The most important things
are unknown or unknowable.”

Let’s look at just a few of the unmeasurables,
unknowns, and unknowables that caused my
estimates to go wildly wrong.

NOT CLARIFYING REQUIREMENTS
In 1993, we started the largest software

project in our history at that time. There
was one little line in the statement of work
that said: “Provide reports for the data.”
This was an embedded system running on an
Intel 80188. It had 512 KB of EEPROM. How
many reports can this be? We estimated that
it would take us 80 hours to create these
reports. It took us over 200 hours to generate
the 100 different reports that the customer
had in mind. Here was a requirement that
was knowable, but we didn’t clarify it. That
made it unknown to us.

MISESTIMATING MEMORY
REQUIREMENTS

If you have to start playing games to shoe-
horn your code into the memory allowed,
you can blow your schedule completely out
of the water. In 1974 a professor in one of
my classes said: “In the very near future,
you will never have to worry about memory
constraints again.”

Now this professor was smart. But he was
dead wrong. Hardly a project goes by my desk
that still doesn’t concern itself with either
RAM or ROM memory usage. In 1997 we
were porting an embedded system to a DOS
PC. Because we misestimated the memory
requirements, we were forced to convert the
program to use overlays (basically keeping
only some of the program in memory at a
time—something that happens automatically
now). That part was easy. The problem was
that the overlays didn’t work in a multitasking
OS that we put on top of DOS. It took two
engineers a month working close to 80 hours
per week to solve. The memory required for a
software project is an unknowable unless you
have designed it or something similar before.

THAT ELUSIVE BUG
I have more stories than there are pages

in this magazine about one tenacious bug that
took almost as long to find and fix as the entire
estimate. This happens a lot. In 2006, we
were about to release an embedded system
on time and within budget estimates. Then
during the last weeks of testing, a problem
surfaced in the Linux C library that was
difficult to duplicate and even more difficult to
fix. We spent more than a calendar month and
several man-months to correct this bug. How
could we have estimated for this unknown?

THE OTHER GUY
There is a class of estimate defeaters that

CIRCUIT CELLAR • DECEMBER 2014 #29350
CO

LU
M

NS

I call ”The Other Guy.” The other guy’s API
doesn’t work the way we expected. The other
guy’s web server doesn’t respond quickly
enough. The other guy’s device doesn’t meet
specifications.

On a 2010 project, we were using a flow
sensor to measure oxygen content and
flow. This sensor worked in most cases but
sometimes didn’t. Some sensors worked
flawlessly. Some did not. This was unknowable
to us when we performed the estimate for the
proposal. We spent many times our original
estimate in getting it to work.

HIDDEN COMPLEXITY
Very often when an estimate is made,

there are lurking under the surface a vast
array of hidden complexities that can only
be uncovered by implementing and testing.
Fred Brooks puts it this way in The Mythical
Man Month, “the incompleteness and
inconsistencies of our ideas become clear
only during implementation.”

This week I was reviewing the specification
for an interface to a new cell modem module we
were including in one of our designs. All of our
designs work on very low cost data plans. This
requires us to use very little data bandwidth
every month. One of the cell carriers has a
very strict and very clear set of requirements
about handling retries. Retries can be very
costly in data plans. My specification called
out for the software to meet these very
strict and very clear requirements. It should
be easy to estimate how long it will take to
implement that algorithm. But during the
review, one of the designers asked: “How do
we manage the retries handled by the TCP/IP
stack underneath us?”

We all knew that the TCP/IP logic in our
embedded Linux systems performs retries.
How will we make that work with the carrier’s
retry requirements? This is an unknown with
lots of hidden complexity and could easily add
an order of magnitude to the effort required
to implement this. In this case, we happened
to think about this complexity but that doesn’t
always happen.

PROGRAMMER EFFICIENCY
We all know that different people take

different amounts of time to do the same job.
Joel Spolsky in his book Smart and Gets Things
Done claims that his research shows that
there can be more than an order of magnitude
difference is programmer efficiency.

OK, so you take that into account when
you estimate a job based on the programmers
you have. But a programmer leaves or gets
sick. You have to use your least efficient
programmer. Now you could easily see your
estimate go out the window by an order of
magnitude. The most important things are
unknowable and unmeasurable.

OPTIMISM AND HUBRIS
These nonidentical twins are one of the

reasons we fail to accurately estimate our
software projects. We always think we can
get better. Because of our pride we can easily
fall prey to wishful thinking. I know I can do it
better this time. Research has demonstrated
that this is a pervasive problem in software
estimating. Related to this is what is called
“hindsight bias.” When combined with

ABOUT THE AUTHOR
Bob Japenga has been designing embedded
systems since 1973. In 1988, along with his
best friend, he started MicroTools, which spe-
cializes in creating a variety of real-time em-
bedded systems. With a combined embedded
systems experience base of more than 200
years, they love to tackle impossible problems
together. Bob has been awarded 11 patents in
many areas of embedded systems and motion
control. You can reach him at rjapenga@mi-
crotoolsinc.com.

RECOMMENDED READING
I’d like to recommend the following books to anyone interested in

becoming a better software engineer:

• “Better Sure Than Safe? Over-Confidence in Judgment-Based Software
Development Effort Prediction Intervals” (Journal of Systems and Software,
Volume 70, February 2004): This article by Magne Jørgensen, Karl Halvor
Teigen, and Kjetil Moløkken provides research into how our over-confidence
affects our ability to estimate.

• Controlling Software Projects (Prentice Hall, 1986): I cut my teeth on Tom
DeMarco’s book. It is still useful today.

• Dr. Deming: The American Who Taught the Japanese About Quality
(Millennia Management Associates, 2010), by Rafael Aguayo and W.
Edwards Deming

• Smart and Gets Things Done: Joel Spolsky’s Concise Guide to Finding the
Best Technical Talent (Apress, 2007), by Joel Spolsky

• The Black Swan: The Impact of the Highly Improbable (Random House
Publishing Group, 2010): Nassim Taleb’s book is essential reading for
anyone who wants to be able to predict the costs of developing embedded
systems

• The Mythical Man-Month (Addison-Wesley Professional, 1975): Frederick P.
Brooks, Jr.’s classic book is a must read for anyone who wants to grow in
their ability to estimate software projects.

• The Soul of the New Machine (Atlantic-Little Brown, 1981): Tracy Kidder’s
classic book, although outdated in its context, teaches a lot about
developing electronic systems. It describes how a team of software and
hardware engineers at Data General developed the Eclipse in 1980.

• What the Dog Saw (Bay Back Books, 2010): Malcolm Gladwell’s book
introduced me to the concept of “creeping determinism,” which is better
called “hindsight bias” (http://en.wikipedia.org/wiki/Hindsight_bias).

circuitcellar.com 51
CO

LU
M

NS

optimism and hubris, we just think that
we did better in the past than we actually
performed.

STEP 1: RECOGNITION
Recognition of the problem is the first step

at correcting it. We have named a few of the
trees in the forest of problems with estimating
software development costs. Tom DeMarco
noted: “An estimate is the most optimistic
prediction that has a nonzero probability of
coming true.”

The problem for us is that the probability
of most of our estimates of coming true is
very close to zero. We have to learn how to do
it better. Next time we will again focus on
identifying the problem—but this time
specifically from an embedded design
perspective. Of course, only in thin slices.

