a4

June 2013 - Issue 275

(<

EMBEDDED IN THIN SLICES

by Bob Japenga (USA)

Concurrency in Embedded

Systems (Part 7)
Using Signals in Embedded Linux

What are software signals and how can you use them to effectively
communicate between a software system’s concurrent operations? This article
explains how and when to use signals. It also explores using signals vs.
message queues or FIFOs and the difference between standard and real-time

signals.

E arly in my embedded software designer
career, I sometimes used the MS-DOS oper-
ating system (OS) in my designs. (Can you really
call MS-DOS an 0S?) During that time, I encoun-
tered a C library function called “signal.” For more
years than I care to admit, much to my detriment,
I didn’t understand that function and avoided using
it in my designs.

This article examines what software signals are
and when to use them, and includes some exam-
ples of how my company uses signals in embedded
Linux. Specifically, as is the pattern in this series,
we will be looking at POSIX-compliant signals.

WHAT ARE SIGNALS?

In simple terms, a software signal is another
means of communication between a software sys-
tem’s concurrent operations. In Linux, the concur-
rent operations used in applications are called
processes and threads (see Part 4 of this article
series for more information about threads and
processes). Part 6 examined message queues and
first-ins, first-outs (FIFOs) as a means to communi-
cate information between processes and threads.
Both messages queues and FIFOs are created by
you, the designer, for inter-process communication
(IPC) between your threads and processes.

Signals provide another mechanism for you to
signal to your other threads that something hap-
pened. For example, you could use a signal to tell
another thread that a valve has opened or that data
is available in a particular device. In one of our
designs, we periodically receive data via an IR
receiver from a device embedded in the human
body indicating aortic pressure and electrical activ-
ity from the heart. The embedded device sends five

pieces of information from the heart every millisec-
ond. We use a signal to wake up the thread that will
process that data.

One other difference between signals and mech-
anisms such as message queues and FIFOs is that
the OS can (and does) send signals to your
processes and threads. You don't have to do any-
thing and your software will receive signals from
the OS. For instance, if the user kills your program,
the OS will send it a SIGKILL signal. Or, if your OS
is equipped to detect powerdown, it will send a
SIGPWR signal.

As a designer, all signals have default behavior so
you need not do anything with them (as I did with
my early MS-DOS designs). But, to design robust
systems, you should know what signals can be sent
to your programs, what the default behavior is, and
what to do when you receive these signals.

In some sense, OS-generated signals are like
error interrupt vectors at the hardware level. You
can choose to ignore them or reboot them, but for
good robust design you need to know what they
are and decide how to handle them in each case.
Every instantiation of Linux is slightly different as to
what signals it can generate. You should know all
the signals that can come to you and how you want
to handle them. Usually this information can be
found in the architecture-specific documentation
for your version of Linux.

For example, SIGFPE is the floating-point excep-
tion signal and would only be present if you have
floating-point (software or hardware) present in
your system. The default behavior in most Linux
systems for this signal is to terminate your process
and perform a core dump. That may not be what
you want to do in your system. Perhaps you want

CIRCUIT CELLAR® * circuitcellar.com

I Listing 1—This code sends a notification to send the signal to the pump process.

nals are queued whereas standard sig-

union sigval signalval;
signalval.sival_int = seq_num++;

rc = sigqueue(pump_process_pid, SIGUSRI, signalval);

// This can be a pointer or an integer
// This is used to keep track of sequence
// and is the data sent with the signal

nals are not. For example, if three identi-
cal real-time signals are generated within
microseconds of each other, all three will
be received in order by the application.
However, if three identical standard sig-

il

nals are generated before they are

I Listing 2—The pump process waits for the signal.

processed, the application will only

// Place to store information from the signal
siginfo_t sig_info;
// Setup values for the timer
long val_msec = timeout_msec % MSEC_PER_SEC;
long val_sec = timeout_msec / MSEC_PER_SEC;
const struct timespec sig_timeout =

{.tv_sec = val_sec,
// Signal we are waiting for: SIGUSRI
int user_signal = SIGUSRI;

into sig_info

{
// Process the time out
}
else if (signal_id == -1 &&
{

errno == EINTR)

// Process the interruption
}

.tv_nsec = (long)val_msec * NSEC_PER_MSEC};

// suspend execution until SIGUSRL is set or timeout_msec’s and put the info

receive one. In one of our designs, we
use a standard signal (SIGUSR1) instead
of a real-time signal because we don't
care if we miss one signal and don't want
to queue them up if they get missed.

An integer piece of data can be includ-
ed only with a real-time signals. This
makes real-time signals a convenient and
more efficient mechanism than FIFOs or
message queues for transmitting a small

int signal_id = sigtimedwait(&user_signal, &sig_info, &sig_timeout);

// siggéﬂ id = -1 1? failed - ¢ ’ amount of data between concurrent oper-
// errno == EAGAIN if the signal did not come in before the timeout ations. But you need to be aware of cer-
// errno == EINTR if the wait was interrupt by a signal handler! tain quirks about signals. Finally, real-
if (signal_id == -1 && errno == EAGAIN)

time signals are processed in a prede-
fined order by the application, whereas
the POSIX implementation can process
standard signals in any order.

WHEN TO USE SIGNALS

Obviously, you have no choice with sig-

to notify the user, log an error, and terminate and restart your
application.

Another example is the SIGSEGV signal (i.e., segment fault),
which happens if your program references memory outside its
permitted address space. The default behavior is to terminate
your process. But that can be maddening, because it doesn't tell
you where the fault occurs. Installing a handler for this signal
can help you decide what happens when your program does
this. (Of course, your software never exhibits such aberrant
behavior!) If I was more savvy in my early days, I would have
understood the “signal” function and I would have installed sig-
nal handlers in my MS-DOS systems to handle segment faults
and floating-point errors.

Signals can be handled in one of three ways (technically
called their “disposition”). Signals can be ignored, they can be
handled with a user-defined function, or they can enable the OS
to take its default action. A signal’s disposition can be modified
in real time.

In the POSIX standard and in Linux, there are two kinds of
signals: standard signals that are typically generated by the OS
and real-time signals that are typically generated by the appli-
cation programmer. Real time is a bit of a misnomer, since stan-
dard signals are just as “real time” as are their real-time
cousins. They might better be named “user-defined signals.”
Almost all standard signals (there are two user-defined ones)
have a predefined meaning, whereas real-time signals are user-
defined.

There are slight but important operational differences
between standard and real-time signals. Identical real-time sig-

circuitcellarcom *® CIRCUIT CELLAR®

J nals that come from the OS (i.e., stan-
dard signals). You cannot choose to have the OS send you a
message when you get a segment fault or illegal instruction—
you receive a standard signal. Here, you need to decide when
you need to write a special handler for these signals. My recom-
mendation is to do this when you need something other than
the default operation.

However, when you are faced with a decision to choose a
mechanism for IPC, should you use message queues or signals?
Obviously, if there is more than an integer’s worth of data to be
communicated, you should use a message queue, a FIFO, a
socket, or shared memory. The other distinction is that message
queues and FIFOs are inherently synchronous methods of com-
munication. The receiving process only gets the information
when it wants. Signals are designed for asynchronous data
transfer. Thus, though simple in implementation, their asyn-
chronous nature can create some additional complexity.

However, as designers, we also use signals when they are
built into the C library’s functions. For example, you can design
your system to use the pselect function to wait on a signal
generated from a change in a file descriptor (in Linux a file
descriptor can apply to a regular file, a device driver, FIFOs,
pipes, sockets, any serial port, etc.). The change can be that the
“file” is ready to read or write or that an error has occurred.
Since serial port drivers look like files under Linux, when data is
available at the serial port, the “file” is ready to read and a sig-
nal is sent to your application.

For instance, we use the POSIX pselect function to be noti-
fied by a signal when a device has sent data over the serial port.
We also use the pselect function to configure the system to be

n
~
o
(]
3
1)
12
—
I
™
i
o
o
(]
C
=3
=y

5

June 2013 - Issue 275

o

notified when a file has changed. All general-purpose I/O
(GPIO) looks like a file to a Linux application, so you don't need
to poll the GPIO for a change. But, you can use the pselect
function to trigger a signal when the GPIO has changed. POSIX
also enables you to wait on a signal with a timeout so you can
discontinue after a programmable period of time if the signal
never arrives.

Timers are another common use of signals that is built into
the OS. Interval timers can be set up under Linux (setittimer
function or timer_settime), which will send a signal when the
timer expires. In one case, it sends a fixed signal; in the other,
the signal is user programmable.

HOW TO USE SIGNALS

Signals can be processed in one of two ways. You can create
a signal handler that is invoked when the signal is triggered or
use a sigwait or sigtimedwait function to block the software
until the signal arrives in or a timeout occurs. The code snippets
in Listing 1 and Listing 2 demonstrate how we use signals to
notify a different process that an event has happened and how
we handle that signal.

Listing 1 shows a notification that sends the signal to a pump
process. In this case, the sigqueue function sends the SIGUSR1
signal to the pump process identified with the
pump_process_pid process ID. A sequence number is passed
to the pump process so it can record if it has dropped a signal.
(Remember, the standard signals do not queue up if one is
already queued.)

Listing 2 shows the pump process awaiting the signal. This
code snippet sets up to wait for our signal with a timeout in mil-
liseconds stored in the timeout_msec variable.

This code blocks the thread until the SIGUSR1 signal arrives
or a timeout_msec has elapsed. It also illustrates one of the
more nonintuitive portions of signal handlers.

In the Listing 2 code snippet, while waiting for the signal or
the timeout, if another signal handler is invoked, the sigtimed-
wait will immediately return with a -1 return and with its errno
header file set to EINTR. In this case, there is no way to know
how much of the timer has expired.

The first time I discovered this, it caused me a lot of grief. For
example, the delay with sleep or nanosleep functions can be
terminated early when a signal handler interrupts a sleep. At
least in these cases you can restart the nanosleep or sleep func-
tions with the remaining time. There is no recourse with an
interrupt sigtimedwait function.

UNDERSTANDING SIGNALS

We walk through life picking up regrets like lint in a dryer. One
of my lightweight regrets in my design career was not under-
standing signals earlier. Even if you don't use them, your OSes
are using them. We have looked at them in thin slices—just
enough to whet your appetite. [&l

Bob Japenga has been designing embedded systems since 1973. In
1988, along with his best friend, he started MicroTools, which spe-
cializes in creating a variety of real-time embedded systems. With
a combined embedded systems experience base of more than 200
years, they love to tackle impossible problems together. Bob has
been awarded 11 patents in many areas of embedded systems and
motion control. You can reach him at rjiapenga@microtoolsinc.com.

RESOURCES

B. Japenga, “Concurrency in Embedded Systems (Part 6):
POSIX, FIFOs, and Message Queues,” Circuit Cellar 273,
2013.

, “Concurrency in Embedded Systems (Part 4):
Introducing Linux and Concurrency,” Circuit Cellar 269,
2013.

CIRCUIT CELLAR® * circuitcellar.com

