circuitcellar.com

'EMBEDDED [N THIN SLICES

by Bob Japenga (USA)

Concurrency in Embedded
Systems (Part 6)

Introducing Linux and Concurrency

This is the sixth article in @ multi-part series focused on concurrency in
embedded systems. This article discusses two additional mechanisms
Linux provides for creating robust embedded systems.

ver the past few months, we have been

looking at some mechanisms embedded
systems designers can utilize when using embed-
ded Linux. Specifically, we have examined the
mechanisms that aid us in creating systems with
concurrency. Part 4 of this article series discussed
the various multi-tasking options (i.e., threads and
processes) that can be used to create concurrency.
Part 5 provided details on how shared memory,
semaphores, and mutexes help us communicate
between concurrent processes. If you have been
following this series, you'll know that we prefer
using the POSIX standard mechanisms to imple-
ment our systems so we can easily port our design
to another operating system (OS) should the need
arise. Thus, all the mechanisms we have examined
i this series have been the POSIX-compliant ver-
sions.

Recently at work, this cherished value of using
standards-based mechanisms was severely chal-
lenged. We were creating some Java native inter-
faces (JNIs) for a new hardware design that would
run both Linux and Android. As prime candidates
for the “Android for Dummies” books, we proceed-
ed with our POSIX-compliant design “unencum-
bered by the thought process.” In particular, our
design used POSIX message queues. Everything
came up fine under Linux and things were proceed-
ing on schedule. Then we started testing under
Android. Oh, did I forget to mention Android does
not support POSIX message queues? But isn't
Android built on Linux? Aren't message queues
implemented in the kernel? Yes, but...

After much pain and grief, we switched our inter-
face from POSIX message queues to POSIX first in,
first outs (FIFOs), which are supported under

“ CIRCUIT CELLAR®

Android. So, it seems appropriate for me to
address these two mechanisms available for inter-
process communication (IPC) under Linux in this
month’s article.

POSIX FIFOS

A FIFO provides a unidirectional inter-process
communication (IPC) that has a read end and a
write end. Both hardware and software designers
should be familiar with FIFOs. Basically, if you put
the letters A, B, and C into a FIFO, they will come
out in the order they were put in (A, B, C). UARTs
are the most common hardware devices that can
contain FIFOs. If 16 characters come into the FIFO
over the serial port, they come out in the order
they went in.

Under Linux, you can create a FIFO and use it
just like a hardware FIFO. If you put 16 bytes into
the FIFO, you pull the bytes out in the order they
were put in. Once you have pulled the data out of
the FIFO, it no longer exists in the FIFO.

After you create the FIFO (using the mkfifo
function), you can open it exactly like a file. All the
standard attributes of files now apply to your FIFO
(e.g., permissions, read only, etc). Under conven-
tional operation, one process will open the FIFO for
writing and one will open it for reading. The default
operation forces both the reader and the writer to
block until the other task opens its end of the FIFO.
This can be overridden by using the 0_NONBLOCK
flag with slightly different results for the reader and
the writer. If the reader opens the FIFO with and
the FIFO has not been opened for writing, the open
will not block. If the writer uses 0_NONBLOCK to
open the FIFO and the FIFO has not been opened
for reading, the open will fail. Table 1 provides a

™
~
~
()
>
192}
7]
=
!
(2]
~—
o
~
E
[=%
<



FIFOs
Once the data is read out of the FIFO, the data is no longer available

Under default operation, both the writer and reader of the FIFO will block until the
other end is opened (as described above, the O_NONBLOCK can alter that behavior).

The FIFO data is volatile (deleted at power up)

Even though the FIFO has a pathname in the file system, the data put into a FIFO
does not affect the underlying file system. This means that you don’t need to place
the FIFO on your RAM drive rather than your flash file system to minimize flash usage.
Even if you place the FIFO in the path on the FLASH file system, the name and the
data is stored in volatile RAM. Another way to say this is that all reads and writes to
the FIFO are passed internally in the kernel and do not affect the file system.

All data disappears if both reader and writer close the file

The amount of data that a FIFO can contain is limited by a kernel parameter
(FIFO_SIZE) and is set to 65536 for Linux 2.6.11 and greater.

All writes of less than or equal to PIPE_BUF (4096 for most Linux systems but the
actual size varies on different kernels) are atomic. POSIX requires PIPE_BUF to be at

Regular Files
Data can be read anywhere in the file using Iseek

Opens never block

File data volatility depends on the underlying file system
Performance of read/writes is dependent upon the
underlying file system. Flash file systems have limited
write cycles.

Data does not go away when the file is closed.
Data size is limited only by the size of the file system.

Data writes are not atomic across processes.

™
N
~N
]
3
(9]
n
i
|
™0
—
o
N
E
aQ
<

least 512 so that is what we use in our designs.

Table 1—There are many differences between FIFOs and regular files.

summary of the differences between POSIX FIFOs and regular
files.

DEBUGGING FIFOS

Since FIFOs look like files on the file system, the data being
put in and taken out can be viewed from the command line
(e.g., using hexdump or cat). This could be useful during debug-
ging or even remotely should a released piece of code contain
problems (which of course, your code never does!).

POSIX MESSAGE QUEUES

Linux provides both System V message queues and POSIX
message queues. As we have previously discussed, our thin
slice will limit my discussion to POSIX message queues.

When we discovered that Android did not support POSIX
message queues, we chose to port this API with a POSIX FIFO.
We determined that FIFOs were the closest IPC available under
Android to the message queue for our purposes. One major
thing we lost was that message queues allow for variable-length
packetized data. In other words, the writer function would write
a variable-length message into the queue and the reader would
read that variable-length message out as a complete packet.
FIFOs are byte streams and do not make any distinction con-
cerning message boundaries. Thus, on the reader side, we did
not know how many bytes to read out of the FIFO. We needed
to use a terminator to determine the message size. And that is
a big reason to use message queues instead of FIFOs in your
designs.

POSIX message queues were not available under Linux prior
to 2.6.6. Unlike FIFOs, which use standard open, write, read,
and unlink, POSIX message queues are opened with mq_open,
written to with mq_send, read with mq_receive, and unlinked
with mg_unTink.

MESSAGE QUEUE ATTRIBUTES

POSIX message queues have the following settable attrib-
utes: the maximum number of messages you would allow and
the maximum message size (in bytes). These values are set
when the queue is created and cannot be changed after that. In
addition, the programmer can obtain the number of messages

currently in the queue and know whether or not the queue was
created for blocking or nonblocking 1/0 (which can be changed
after queue is created).

MESSAGE NOTIFICATION

POSIX message queues enable a reader process to be asyn-
chronously notified when a previously empty queue is no longer
empty. Thus, your process does not need to block waiting on a
mq_receive but can perform other functions while waiting for
the message. Your process can be notified by the standard sig-
nal mechanism in Linux (a topic for another day) when a mes-
sage comes in. It does this through what is called registration.
Message notification is another major advantage of queues ver-
sus FIFOs.

There are some things to keep in mind about message noti-
fication. A process is only notified if a message comes in after it
registers to be notified. This means that if there are messages
in the queue when a process registers, it will not be notified of
that existing message.

Only one process can be notified upon the arrival of a mes-
sage in the message queue. You should use blocking if your
design requires two listeners. To enable multiple listeners, each
process must re-register after each notification.

MESSAGE QUEUES LIMITATIONS

Just as all OSes provide some limit to the number of open file
handles, Linux limits the number of message queues. This num-
ber is 256 by default but can be dynamically adjusted up to a
maximum of INT_MAX. This number is architecture dependent
but never less than 4 billion. If you are creating a system with
more than 4 billion message queues, you are designing systems
far more complex than I can handle.

The maximum message size is also defined for Linux as 8,192
by default, but this can be dynamically adjusted up to a maxi-
mum of 1,048,576. Linux also provides the programmer a way
to limit the number of bytes that all queues for a particular user
can use. This is a helpful check to protect your system against
some runaway process that is putting data into the queues but
never taking them out.

CIRCUIT CELLAR® * circuitcellar.com



DEBUGGING MESSAGE QUEUES

Although the message queues are internal to the kernel,
many message queue parameters are accessible from the com-
mand line. We have had systems that have exhibited aberrant
behavior (must have been hardware problems!) and we were
able to use this feature to remotely determine what was going
on in the message queues. To access the queue, you need to
first create a mount point for the queue:

mkdir /dev/my_queue
then mount the queue with the command:
mount -t mqueue none /dev/my_queue

At that point, you can find out the queue size, the signals used
to notify processes, and you can even peek into the data. In
addition, you can tell the message queue to send a notification
to the process waiting for a signal from a particular message.

WHEN TO USE FIFOS OR MESSAGE
QUEUES

I would say (unless you are developing an Android-native
interface) that message queues are the preferred method since
they are more flexible and are not significantly more complex to
use than FIFOs. If you need the ability to handle variable-length
data and require notification rather than blocking, message
queues win hands down. We have never noticed any apprecia-
ble difference in the resource utilization (real time and memo-
ry) between the two. In other words, we have not noticed that
FIFOs are significantly faster than message queues, nor have
we seen significant differences in memory usage (although we
suspect that FIFOs are slightly faster and use less memory). So
the only time I would recommend using FIFOs instead of mes-
sage queues for IPC would be if the slight overhead advantage
makes a difference.

THE COMPLEXITY OF EMBEDDED SYSTEMS

Creating embedded systems is a complex task and is getting
more complex every day. The embedded design community is
creating some pretty amazing products these days because of
tools like Linux. POSIX FIFOs and message queues are two tools
in your arsenal when you choose Linux. In my next article, we
will continue looking at using Linux to create your own amazing
products. &l

Bob Japenga has been designing embedded systems since 1973. In
1988, along with his best friend, he started MicroTools, which spe-
cializes in creating a variety of real-time embedded systems. With
a combined embedded systems experience base of more than 200
years, they love to tackle impossible problems together. Bob has
been awarded 11 patents in many areas of embedded systems and
motion control. You can reach him at rjapenga@microtoolsinc.com.

circuitcellarcom *® CIRCUIT CELLAR®

April 2013 - Issue 273

W



