
58

Fe
br

ua
ry

 2
01

3
–

Is
su

e
27

1

CIRCUIT CELLAR® • www.circuitcellar.com

shared-memory objects” and the standard shared-
memory objects “volatile shared-memory objects.”
Let’s look at each of these two mechanisms.

VOLATILE VERSUS NONVOLATILE
SHARED-MEMORY OBJECTS

In simple terms, both methods enable different
processes to directly access shared memory with-
out system calls (i.e., fast). The nonvolatile mech-
anism enables the memory to be “sticky” across
power outages. When power is lost, a volatile
shared-memory object’s contents are lost. The
caveat with nonvolatile objects for real-time
embedded systems designers is the question of
when the nonvolatile object’s data is committed to
the underlying file. The kernel will commit the data
to file at its leisure. As a designer, POSIX does
enable us to commit on demand (using msync()),
which is a mixed blessing. It frees the designer to
access nonvolatile memory across processes but
places the burden on the designer to know when to
commit the mapped memory to disk.

Unfortunately, the APIs for using these two
mechanisms are not identical. In my opinion, there
should be a flag that makes a shared-memory
object nonvolatile so they can be interchangeably
used by the designer. Very often, we design sys-
tems where certain data’s nonvolatility require-
ments changes over the product’s life cycle. But
these differences persist and we must work around
them.

CONFIGURING VOLATILE
SHARED-MEMORY OBJECTS

Shared-memory objects can be thought of as

Concurrency in Embedded
Systems (Part 5)

This is the fifth in a multi-part article series examining concurrency in
embedded systems. This article discusses some other ways embedded
Linux helps you design robust systems with concurrency

P

by Bob Japenga (USA)

art 4 of this article series discussed Linux
threads and processes. This article will focus

on the first forms of inter-process communication
(IPC): mutexs, semaphores, and shared memory.
As I mentioned last month, remember, we are tak-
ing this in thin slices. The goal of this article series
is to introduce you to the range of tools available in
Linux to assist you in designing robust embedded
systems with Linux. In my last article, I mentioned
Michael Kerrisk’s Michael Kerrisk’s The Linux Pro-
gramming Interface. This month, I want to connect
you to the POSIX standard webpage to find more
about all types of IPC. (See the Resources section
for more information about the POSIX standard for
shared memory.)

SHARED MEMORY
In my last article, we looked at the memory

model Linux uses and how memory is not shared
between processes by design. Thus, one process
cannot share data with another without some sys-
tem mechanism. Linux provides three mechanisms
for designating certain memory as shared and
enables you to access that memory: the historical
System V UNIX shared-memory model, shared file
mapping supported by POSIX, and the POSIX
shared-memory model. This article will examine
the two POSIX mechanisms. Generally, we don’t
recommend using the legacy interfaces when a
POSIX interface is available.

Functionally, these two mechanisms are very
similar. Since POSIX uses the term “object” to refer
to a memory region that can be shared between
processes, for purposes of this article, I will call files
created using shared file mapping “nonvolatile

EMBEDDED IN THIN SLICES

Designing Robust Systems with Linux

59www.circuitcellar.com • CIRCUIT CELLAR®

dle can be closed after the mmap call.

CONFIGURING NONVOLATILE SHARED-
MEMORY OBJECTS

Similar steps are performed to create a nonvolatile shared-
memory object. In this case, you can use the standard open()
commands (instead of shm_open) to create a standard file.
Then, like a volatile object, you use the mmap() system call to
map all or part of the file’s contents to a memory region. The
mmap call sets the size of the file. As with the volatile object, the
file can be closed at this point.

USING SHARED MEMORY
Once the objects are created using one of these two meth-

ods, both object types can be identically used by referencing
them as memory. The objects look like any other memory
object in the process’ virtual address space.

PROS & CONS OF USING SHARED-MEMORY
OBJECTS

Although shared memory is the fastest means of sharing
memory across processes, there is still measurable overhead.
As mentioned in my last article, we measured 50 µs per access
to a nonvolatile shared-memory object on one 600-mHz ARM9.
If you are going to have significant shared memory between
concurrent tasks, you would be better off doing this between
threads and eliminating the overhead.

Also, remember, just because the OS provides this feature, it
does not provide synchronized access to the shared region. You
must use something like a semaphore or mutex to guarantee
the data’s integrity in these shared regions.

SEMAPHORES
As with shared memory, Linux provides both System V sem-

aphores and POSIX semaphores. As before, we will examine
only POSIX semaphores.

POSIX defines two types of semaphores: named and
unnamed. Named semaphores are handled between processes
with a sem_open() system call. Unnamed semaphores share a
memory address. With processes, this can be accomplished
with a volatile shared-memory object. With threads, this can be
accomplished with a global variable. The methods of initializing
and destroying these two types differ, but everything else is
operationally the same.

HOW SEMAPHORES WORK
A semaphore is a simple integer that can be incremented and

decremented but can never fall below zero. The sem_post()
function increments while the sem_wait() function decrements
the semaphore. If the integer is greater than 0, the sem_wait
immediately returns. If the integer is 0, the task will block it
until the semaphore rises above zero then it will decrement the
integer.

USING SEMAPHORES IN CONCURRENT
DESIGNS

Let’s look at a simple example using unnamed semaphores to
illustrate how you would use a semaphore to provide the nec-

volatile files (or files kept on a RAM drive) keeping with the
Linux virtual memory paradigm. To configure a volatile shared-
memory object, the programmer must perform three steps. The
first step is to create a shared object much like you create a file.
You select an object name then you open it with the name,
flags, and a mode just like you open a file to create it. The
object can have read-only or read-write access based on the
flags. The POSIX system call shm_open() is used to perform this
function. It returns a volatile shared-memory object handle.
The second step is to use ftruncate() to set the object’s size.
Just like a file, the size can be later expanded or contracted. The
final step is use the mmap() system call to map all or part of the
object into the process’ virtual memory. Optionally, the file han-

Fe
br

ua
ry

 2
01

3
–

Is
su

e
27

1

Listing 1—This is an example of semaphore code

// globals
sem_t semi;
unsigned long long counter; /* shared object */

int main()
{

pthread_t counter_thread;
pthread_t reader_thread;

sem_init(&semi, 0, 1); // semaphore is “named” semi
// semi is local
//initialize semi to 1

pthread_create (&counter_thread,
NULL,
(void *) &incrementer,
NULL);

pthread_create (&reader_thread,
NULL,
(void *) &reader,
NULL);

while (1 == 1)
{

sleep (10);
}

}
void reader (void *)
{

while (1 == 1)
{

sem_wait(&semi); // decrement
// start of critical section
printf(“Current Counter = %llu\n”,counter);
// end of critical section
sem_post(&semi); // increment
sleep(1);

}
}
void incrementer (void *)
{

while (1 == 1)
{

sem_wait(&semi); // decrement
// start of critical section
counter++;
// end of critical section
sem_post(&semi); // increment
nanosleep(100000); // Sleep for 100 microseconds

}
}

60

Fe
br

ua
ry

 2
01

3
–

Is
su

e
27

1

CIRCUIT CELLAR® • www.circuitcellar.com

essary synchronization with shared-memory objects (in this
case shared between threads).

Assume you have a 64-bit counter that is incremented by one
thread, read by another, and is stored in nonvolatile shared
memory. Assume the underlying hardware only supports 32-bit
integer arithmetic. (Note: We are not building this robust, we
are not checking the sem_init or pthread_create returns to
keep the example simple.)

The Linux C code segment in Listing 1 shows how this works.
The main process creates two threads and a semaphore and
then goes to sleep. The counter thread increments a 64-bit
counter. Remember, since this is a nonatomic operation, with-
out the semaphore, it could be interrupted midstream and pro-
duce incoherent results in the reader thread. The reader thread
merely prints the counter value to the standard output device.

With the semaphore in place, the reader thread will always
print coherent data. If the reader attempts to print the counter
while the counter is being incremented, the semaphore will be
set to 0 and the reader thread will block at the sem_wait() until
the incrementer function has updated counter.

Two other nice enhancements for the embedded designer are
the sem_trywait() and the sem_timedwait(), which do exact-
ly what you’d expect them to do. With the sem_timedwait, you
can protect your thread against an unruly thread and not wait
forever for the semaphore. You can use the sem_trywait() to
control the blocking.

MUTEXES
POSIX supports mutexes (which stands for mutual exclusivi-

ty), which is another mechanism for providing synchronization
for concurrency. Like semaphores, mutexes can ensure atomic
access to any shared resource. Unlike semaphores, which can
have an integer number of values, a mutex, by default, is bina-
ry in nature and can only be locked or unlocked. Let’s see how
you create and use mutexes.

CREATING AND USING MUTEXES
A default style mutex is simply made by creating a variable

of type pthread_mutex and initializing it with
PTHREAD_MUTEX_INITIALIZER. It can be as simple as:

pthread_mutex_t MyMutex = PTHREAD_MUTEX_INITIALIZER;

A mutex can then be locked (pthread_mutex_lock) and
unlocked (pthread_mutex_unlock) to achieve the necessary

synchronization. Hopefully, you can see that these could be
used in the previous code example by replacing the sem_wait
with the pthread_mutex_lock and the sem_post with the
pthread_mutex_unlock.

WHERE MUTEXES WORK BETTER THAN
SEMAPHORES

There are at least two cases where mutexes work better than
semaphores. Many times, we create several functions in a con-
current design that access the same shared resources. With a
mutex, you need not worry about nested layers of critical sec-
tions of code. Listing 2 illustrates how this works.

With a semaphore, you would be locked out forever in the
low-level function when called by the high-level function. With
the mutex, you have options to easily solve this. Instead of
using the default behavior, POSIX has two other types of
mutexes. For PTHREAD_MUTEX_ERRORCHECK mutexes, the
lock would fail and you would know you need not unlock the
mutex. For PTHREAD_MUTEX_RECURSIVE mutexes, the lock
maintains a counter so you can enter a critical section a second
time with no problems (as in our low-level function). Unlocking
merely decrements the counter and doesn’t actually unlock the
mutex.

The second advantage of a mutex over a semaphore is that
the mutex can only be unlocked by the thread with which it was
locked.

A way to remember this feature is not to think of lock and
unlock but owned and available. If it is owned (i.e., locked), only
the owner can make it available (i.e., unlocked). This feature
helps create a much more robust design because you are forced
to think in a more structured manner.

WHERE SEMAPHORES WORK BETTER THAN

Listing 2—When using a mutex, nested layers of critical code sections
are unnecessary.

HighLevelFunction()
{

// Do some work
// Enter Critical Section with Semaphore (sem_wait)

or Mutex lock
AccessSharedResource();
// Do some work
LowLevelFunction();
// Exit Critical Section with Semaphore post

(sem_post) or Mutex unlock
// Do some work

}

LowLevelFunction()
{

// Do some work
// Enter Critical Section with Semaphore (sem_wait)

or Mutex lock
AccessSharedResource();
// Exit Critical Section with Semaphore post

(sem_post) or Mutex unlock
// Do some work

}

POSIX SIDEBAR
We haven’t talked about portable operating system

interface (POSIX) in this column and it is worthy of a col-
umn all by itself, but for now, suffice it to say that it
defines an operating system (OS) that provides a stan-
dard interface for applications written across multiple
OSes. The POSIX standard was formalized by the IEEE
and is also known as IEEE-STD 1003. Theoretically, you
could write a POSIX-compliant application for Linux and
then switch to QNX or VxWorks with no change to your
code. Let me know if you would like an article or two on
POSIX.

61

Fe
br

ua
ry

 2
01

3
–

Is
su

e
27

1

www.circuitcellar.com • CIRCUIT CELLAR®

RESOURCES
B. Japenga, “Concurrency in Embedded Systems (Part
4): Introducing Linux and Concurrency,” Circuit Cellar
269, 2012.

M. Kerisk, The Linux Programming Interface: A Linux and
UNIX System Programming Handbook, No Starch Press,
2010.

The Open Group, “The Open Group Base Specifications
Issue 7,” 2008, http://pubs.opengroup.org/onlinepubs/
9699919799.

Bob Japenga has been designing embedded systems since 1973. In
1988, along with his best friend, he started MicroTools, which spe-
cializes in creating a variety of real-time embedded systems. With
a combined embedded systems experience base of more than 200
years, they love to tackle impossible problems together. Bob has
been awarded 11 patents in many areas of embedded systems and
motion control. You can reach him at rjapenga@microtoolsinc.com.

MUTEXES
If you have a resource such as a finite number of open-file

handles and you want to gracefully handle times when you run
out of file handles (not just abort your program), semaphores
do the trick. These file handles are allocated and dynamically
used for a time when the file is open and released when closed.
In this case, a semaphore works better than a mutex. If you ini-
tialize the semaphore to the number of open file handles when
it is created, your thread can simply perform a sem_wait when
it wants to obtain a file handle. If there is at least one available,
the code does not block. If all of the open file handles are
exhausted, the code will block until one becomes available. This
is much more robust than aborting the program under this con-
dition.

ALTERNATIVE OPTIONS
All locks and semaphores incur a resource penalty. However,

understanding these options is critical in designing embedded
systems with concurrency. If you are fortunate enough to be
using a toolchain that supports the latest C standard (C11)
there are a number of other concurrency controls built in. But
that is for another day, since we only take things in thin slices.
I

