3

December 2012 - Issue 269

<

'EMBEDDED [N THIN SLICES

by Bob Japenga (USA)

Concurrency in Embedded
Systems (Part 4)

Introducing Linux and Concurrency

This is the fourth article in @ multi-part series about concurrency in
embedded systems. Here you learn how embedded Linux provides the
mechanisms to design robust systems with concurrency.

y previous articles examined common

pitfalls in systems with concurrency
and discussed in general terms how to deal with
these pitfalls. The next several articles will discuss
the embedded Linux features available to imple-
ment a well-designed system with concurrency.
Hardware and software concurrency issues were
considered in previous articles. This and upcoming
articles will strictly examine software. This article
discusses the mechanisms to create concurrency in
your software through processes and threads.
Upcoming articles will show how semaphores,
pipes, mutexes, FIFOs, sockets, shared memory,
and message queues can be used with these con-
current threads and processes. Keep in mind; we
are taking this in thin slices. To learn more, a great
resource is Michael Kerrisk's The Linux Program-
ming Interface. I'll introduce the features and you
can dig deeper with this and other books.

THREADS & PROCESSES

The first concurrent operating system (OS) I
used was Digital Equipment Corporation’s RSX-11.
(You might be interested to know that the second
instantiation of Windows NT is a descendent of
RSX-11). In RSX-11, concurrent operations were
called “tasks.” Later, when I wrote my own real-
time multitasking OSes (thank goodness those
days are over) we always used the word “tasks” to
describe the separately executable programs that
concurrently ran. When I first started using Linux
(actually QNX was my first exposure to a
Unix/Linux-like architecture), I needed to learn a
new set of terms: processes and threads. For this
article, when I use the word “task” I am talking

about either a process or a thread. I'll start by
defining terms and looking at the differences and
similarities.

DEFINITIONS

Processes and threads fall under my old defini-
tion of tasks. A task can be defined as an instance
of a software program that is utilizing CPU
resources to accomplish some purpose. These
resources include memory, /O, the file system(s),
and networking. In Linux, a process is a task that
obtains these resources from the kernel. All
processes have their own memory allocated to
them. These consist of: program memory (some-
times called the “text” or code segment), data
memory (where variables are kept), heap (i.e.,
dynamic memory), and the stack. The kernel’s
memory manager prevents processes from having
any access to other processes’ memory. This
encapsulation is an extremely valuable feature that
enables us to isolate the process from problems
created by hardware or software memory corrup-
tion. If one process goes amuck, there is no chance
of corrupting memory in other processes. If hard-
ware or software never failed, this separation
would be unnecessary. Figure 1 shows how a
process with multiple threads uses virtual memory.

Here is where things get a little tricky. A process
can create a separate process called a “child
process.” The creating process is called the “parent
process.” The child process inherits copies of all the
parent’s data, stack, and heap segments. However,
the program memory is shared by the parent and
child and is set to read only by the kernel’s memo-
ry manager. Think of the program memory as the

CIRCUIT CELLAR® * www.circuitcellar.com

read-only DNA inherited from the par-
ent and data and think of stack and
heap as life’s experiences. You are
stuck (for better or worse) with what
you get for DNA, but your life experi-
ences are your own and can be
shaped independently of your parent’s
experience. A child process is free to
modify variables and use resources
however it wishes, with no possibility
of interfering with the parent’s memo-
ry and resources. With child process-
es, similar tasks that use a common
code base can maintain data inde-
pendence and still share the same
code.

Each process (parent or child) can
create separate execution threads.
These threads share the same code
base as the child processes do with
their parent in a read-only memory
segment, but they also share all mem-
ory except the stack and thankfully
“errno” (i.e., the global variable that
indicates the type of error that occurs

Virtual
address space

Program and static libraries

Argv and environment variables

Stack for starting
main process
(can grow)

,,,,,,,,,,,,,, o

Stack for Thread 3

Stack for Thread 2

Stack for Thread 1

Dynamic (shared) libraries

,,,,,,,,,,,,,, Y

Heap (dynamic memory)

Uninitialized data

Initialized data

Main process

Thread 3

in a given time period. Any time not
allocated to the real-time group will be
allocated to the other processes in the
standard round-robin fashion. After
the kernel is built to support this, the
software can dynamically set the
scheduling period and a global limit as
to how much time real-time schedul-
ing it can use.

Remember, this is in thin slices,
there is much more I could say about
this. If there is interest, I can certain-
ly write a future article about my com-
pany’s experience using real-time
extensions. A lot of work is being done
in Linux in this area—in particular for
real-time embedded systems—so you
need to be aware of what is supported
by your particular version of Linux.

PROCESSES VS. THREADS

For the software system’s designer,
the question arises as to when to use
threads and when to use processes.
This choice depends on the differences

with certain function calls). Thus, one

between the two and the associated

thread of the same process can stomp
all over another thread’s heap and
data variables. Or, to put nicely, they can share each other’s
data. Initial (i.e., minimum) stack sizes can be separately set
for each process and for each thread. Think of threads as old-
time multitasking with some useful additions.

SCHEDULING

Any time you use multitasking, you have to know how the
kernel performs scheduling. The kernel does not make a distinc-
tion between processes and threads with regard to scheduling.
In Linux, a single-thread process is treated the same as all
other threads. Linux gives the designer significant flexibility by
enabling a number of options for the type of scheduling when a
process is created. Out of the box, the default scheduling algo-
rithm used for a process is round-robin time slicing
(SCHED_OTHER). In round-robin time slicing, every task gets
an equal real-time slice. Each task either runs for its allotted
time or until it relinquishes control. Although there are priori-
ties, they are more like suggestions to the kernel (i.e., telling
children to play “nice”). Appropriately, these are called “nice
values.” In addition there is round-robin with real priorities
(SCHED_RR); first-in, first-out (SCHED_FIFO), which eliminates
the time slice (i.e., each task runs until it blocks or terminates);
batch mode scheduling (SCHED_BATCH), which tells the kernel
this process is “not nice” and gives it less favor when schedul-
ing; and idle mode (SCHED_IDLE), which is the same as
SCHED_OTHER, but with a nice value so low, it never has to
run.

In addition, Linux now provides the ability to create a group
of processes that use what is called “real-time extensions.” Each
group can be assigned a specific amount of time it can run with-

www.circuitcellar.com *® CIRCUIT CELLAR®

Figure 1—Memory allocation is a multiple-thread process.

advantages and disadvantages.

Data isolation. One cannot speak
highly enough about the advantages of eliminating shared data
space in creating robust systems. But, the advantages quickly
disappear if you design separate processes that require a lot of
shared memory. Even with all the isolation processes provide,
you can still declare certain memory as a shared resource
across processes. If your concurrent task design requires a lot
of shared memory, you should use threads. We recently profiled
one of our designs that used a lot of shared memory between
processes and found that (on an ARM AM3517 running at 600
mHz), each shared variable access cost 50 ps. Advantage:
Processes, unless you need shared memory.

Context switching times. Any time the kernel switches from
one task to another, we call that a context switch. This can hap-
pen when a task’s allotted time runs out, when the task releas-
es control to the kernel, or when a higher-priority task preempts
another. When the kernel’s scheduler switches from one thread
to another within the same process, the virtual memory space
remains the same. During the context switch between process-
es all virtual memory has to be switched out. An additional cost
that is more difficult to measure but can be significant, is that a
context switch for processes affects the CPU’s caching mecha-
nism. When a context switch happens, the cache’s memory
addresses are no longer useful. This adds an indeterminate
amount of time to the context switch. Published benchmarks on
this are sketchy and not helpful. Some give a 10-to-15% advan-
tage to threads. If context-switching time is critical, you may
need to rapid prototype your architecture and see what actual-
ly happens for your application. Slight advantage: Threads.

Resources. Since each process uses its own instance of mem-
ory for program and data (child processes are different), a

a
©
~N
o
3
wn
w0
9
I
~
—
o
N
—
9]
a
£
9]
O
o)
[a)

o
©
~N
o
3
[9]
%]
RG
I
~
~—
o
N
—
@
a
£
o]
O
o]
(&)

thread can use significantly less virtual
memory than a process. In addition,
semaphores, timers, and file handles are
all shared between threads of the same
process. Advantage: Threads.

Libraries. Linux enables you to use
static or dynamic libraries. A static library
is linked into your code space and every-
thing 1 have said concerning your code
space (i.e., “text” segment) applies to
any static library. For dynamic or shared
libraries, all threads share the same
dynamic library in their virtual address
space. Dynamic libraries add an addition-
al requirement on the designer concern-
ing a library function’s “thread safety.”
With processes, you don’t need to be
concerned about whether or not the
library is “thread safe” since you have a
completely separate instantiation of the

library. Resource-wise advantage:
Threads. Ease of use advantage:
Processes.

Dynamic starting and stopping. Many
times, a design has a requirement to
start and stop a task. The overhead for
stopping and starting a process is signifi-
cantly greater (a factor of 10) than start-
ing and stopping a thread. Advantage:
Threads.

What about profiling tools? There are
tools available for profiling both threads
and processes, so I see no clear advan-
tage of either. From the command line,
processes are a little easier to profile than
threads. Slight advantage: Processes.

Software updates. Since processes are
separate executables that can be sepa-
rately updated, there is some advantage
to making every task a process. Slight
advantage: Processes.

What about multiprocessing? 1 expect
sometime in the near future to design our
first embedded system with a multicore
processor. But, to date, it is only a fea-
ture we appreciate on our desktops and
servers. One huge advantage of using
Linux for embedded systems is that the
Linux community is getting the kinks out
of this OS feature on desktops and
servers. When I am ready to incorporate
it into my first embedded design, it will
have had years of experience. The OS
can run any thread on any core (of
course, under careful guidance). No
advantage.

QUESTIONS & ANSWERS

Since I am not usually afraid to go
where angels fear to tread, I will give my
opinion concerning processes and
threads in embedded real-time systems.
I think you need to start with some ques-
tions.

How important is keeping the data iso-
lated? There are some designs where this
is absolutely critical. Processes are the
way to go, in that case. End of discussion.
I have experienced few problems in sys-
tems caused by errant pointers that need
the kind of memory protection processes
provide. The data sharing threads permit,
when rightly designed, is more efficient in
the kind of systems we design.

What do you do when a thread crash-
es? Unlike a server or even a desktop use
of Linux, our embedded systems usually
cannot tolerate any task failing. On a
desktop, if your browser locks up, you
just restart the browser. What you don't
want is for the browser failure to bring
down the whole system. In an embedded
system, if one task were to crash, should
the rest of the system keep working?
Would you want to design the system to
restart just the failed process or thread?
My opinion, which we have implemented
wherever possible, is to force a restart of
the entire system in the case of a single
thread failure. Recently, some code we
wrote got passed off to a customer who
modified it in an attempt to restart a
failed thread. This was done in the watch-
dog logic. We immediately jumped all

over the unsuspecting maintainer of this
code (nicely, of course) about the risks of
doing this. In our case, all processes
were talking over queues that did not
recover well from a restarted process.
But more importantly, when something
unexpected happens that causes a
process or thread to crash, why risk
restarting the processes when the sys-
tem is in an unknown state.

Which to choose? For these reasons, I
find that a design with a few processes
and many threads is better than a design
with many single-threaded processes.
We use a sophisticated watchdog mecha-
nism to force a complete reboot rather
than restarting an individual process. I
use processes when development needs
(e.g., software updates or number of
project designers) make them easier to
use.

DESIGNING CONCURRENT
SYSTEMS

Embedded Linux provides the system
designer with an arsenal of weapons for
designing a system with concurrency.
The very mature kernel and tasking
model gives most designers more than
they need. Next month, I'll examine
additional tools to make your tasks “play
nice.” &l

Bob Japenga has been designing embedded systems since 1973. In 1988, along with
his best friend, he started MicroTools, which specializes in creating a variety of real-
time embedded systems. With a combined embedded systems experience base of
more than 200 years, they love to tackle impossible problems together. Bob has been
awarded 11 patents in many areas of embedded systems and motion control. You can

reach him at rjapenga@microtoolsinc.com.

RESOURCE

M. Kerisk, The Linux Programming Interface: A Linux and UNIX System Program-

ming Handbook, No Starch Press, 2010.

CIRCUIT CELLAR® * www.circuitcellar.com

