
44

O
ct

ob
er

 2
01

2 
– 

Is
su

e 
26

7

CIRCUIT CELLAR® • www.circuitcellar.com

preemption (one thread interrupting another) may
be unnecessary, except in the interrupt service rou-
tines (which are inherently preemptive). Ideally,
you may be able to eliminate custom interrupt rou-
tines, which can simplify everything. This can also
simplify resource sharing by eliminating the need
to coordinate reading and writing to these shared
resources. It prevents the possibility of dead lock
and priority inversion. It eliminates the need for
semaphores, mutexs, and other locking mecha-
nisms, which can cause more problems than they
solve. There is no need to worry about file sharing.
Without preemption, you don’t need to worry about
atomic operations or which library functions are
thread safe.

Identifying what libraries are thread safe is no
trivial task. One real-time operating system (RTOS)
manufacturer that touts its reliability has almost 20
pages of documentation on which functions are
completely thread safe and which are partially
thread safe. It includes special cases of partially
thread-safe functions, and functions that are
thread safe except for one shared variable. The
POSIX standard lists about 100 standard functions
that are not thread safe.

CONCURRENCY WITH LIMITED
PREEMPTION

Late in a major new product’s development
cycle, we began noticing some errors that were
intermittent and difficult to duplicate. After signifi-
cant pain and effort, we found a particular thread-
safe library function was not thread safe. Our solu-
tion proved quite simple. We set all threads’ priori-

Concurrency in Embedded
Systems (Part 3)

The first two parts of this article series introduced concurrency in
embedded systems and discussed two common concurrency design
problems. The third part of this series examines generic ways to avoid
some of these problems.

T

by Bob Japenga (USA)

he introduction to this article series discussed 
some common pitfalls when using concurren-

cy. The last article examined some case studies of
specific pitfalls. This month, I want to step back and
look a concurrency from a higher level, including
some generic ways to help design robust systems
with concurrency.

CONCURRENCY WITHOUT PRE-
EMPTION

Concurrency is often used to remove the com-
plexity from a design with many unique and inde-
pendent functions. For example, consider a simple
device with a control function, a data storage func-
tion, a networking function and a user interface
(UI) with a keyboard and a touch screen. Concep-
tually, it may be easier to break these four functions
into six separate concurrent threads. The UI would
have three threads: one for the keyboard, one for
the touch screen, and one to manage the user
inputs to create the display. Additional “threads”
may exist in the interrupt routines. Once broken up
in these concurrent threads, the designer can think
through each function separately and seamlessly
intersperse necessary waits into the function.
Breaking these up into separate concurrent threads
provides other significant advantages. There is less
coupling between functions, it is easier to delegate
the tasks to separate people, and it is easier to
debug.

If the threads are designed so that no thread
runs for more than 10 to 20 ms and there are no
high-speed and/or hard real-time requirements,

EMBEDDED IN THIN SLICES

Avoiding Concurrency Problems



45www.circuitcellar.com • CIRCUIT CELLAR®

Have I provided a mechanism to handle an incomplete opera-
tion? Finally, since I don’t really trust my own ability to do this
perfectly, all of our systems must be tested under tens of thou-
sands of power cycles (e.g., simulating crashes or asynchronous
power outages) in an attempt to verify we have done this cor-
rectly.

CONSISTENCY
An embedded system that exhibits consistency cannot end up

in an inconsistent state. We addressed consistency in our last
article when we discussed writing multiple-byte data structures
in an environment without atomicity. But consistency goes
beyond temporary data. Many of the systems we design as
embedded engineers must run 24/7 and endure hundreds of
power fails in their lifetime (and unfortunately a few crashes).
As we discussed above, power outages and crashes are a much
overlooked kind of concurrency. Ensuring the system does not
find itself in an inconsistent state is no small task. I have often
been involved in designs where these inconsistent states get
discovered in testing (and usually late in testing). 

Here are some things that have helped me avoid inconsistent
states: Identify all of the states I know could be considered
inconsistent. Repeatedly ask yourself questions (e.g., Have I
handled this case?) Put the checks in startup for inconsistent
states. Even if I think there isn’t a chance of it getting into that
state, why not put the code in at startup to correct the case?
Check for inconsistent states during normal operation. Concur-
rent operations could also create such a state. Do you have
code in it that can handle these inconsistent states? The key to
the definition is “end up in inconsistent states.” Your system
may get into this state temporarily—but make sure at startup
and during operation you have provided for a mechanism to
restore it to a consistent state.

ISOLATION
Sometimes I think the acronym creators needed an “I” for

their acronym when they chose the word “isolation.” I prefer to
think of this principle as making your embedded design order of
operation independent insofar as the operations are order inde-
pendent. With concurrency, we can often create cases where
operations are interleaved. And variable timing can create race
conditions. Race conditions in software have killed people (e.g.,
the famous Therac-25 failures[1]).

How can we prevent race conditions and create order inde-
pendent operations? In M. Barr’s, “Firmware-Specific Bug #1:
Race Condition,” (Embedded Gurus, 2010) a respondent to the
blog wrote, “Without sharing resources, race conditions won’t
happen.” That is just not true. Race conditions can happen in
single-threaded software systems that have hardware with a
mind of its own. As I stated in the first article, concurrency can
happen with the hardware being the concurrent thread. So,
eliminating shared resources can reduce, but not eliminate, the
probability of a race condition.

Here are some of my basic guidelines to prevent concurren-
cy based order of operation based issues: Identification. Start
by identifying operations that must be ordered. Look at your
design and ask: Does this depend on timing from an external
resource (HW or SW)? This is nontrivial. I didn’t see most race

ty the same except for one that absolutely had to be preemp-
tive. We ensured this thread did not use our “not so safe”
thread-safe library. The fix was quick and painless.

The other obvious way to use limited preemption is to only
include preemption in your interrupt routines. Then you only
need to worry about the concurrency pitfalls in routines with
less resource sharing.

CONCURRENCY ON ACID
An old database paradigm called ACID—which stands for

atomicity, consistency, isolation, and durability—is applicable to
designing embedded systems with concurrency. Real-time
multiuser databases have a lot of the same problems that we
have when designing embedded systems. Imagine if you and
your spouse went to different ATMs to remove funds from your
checking account. You would have concurrency and you would
have problems if the concurrency was not properly handled at
the design stage. Ensuring that all your embedded design
aspects have this paradigm’s properties will help ensure safe
and reliable operation. 

ACID was developed in the late 1970s as a means of evalu-
ating the reliability of distributed databases. The next sections
will example each of ACID’s elements.

ATOMICITY
The last article provided a detailed discussion on atomicity.

Let’s step back and look at it from 5,000’. A good way to
describe atomicity from a higher level is to say: An atomic oper-
ation is one that can assure us that in all cases (including power
failures, system resets, and all errors), the operation will com-
plete as desired or have no effect on the system. 

In the last article, we did not address the issue of an opera-
tion being atomic across power outages or system crashes. A
power outage or a system crash is a much overlooked form of
concurrency. Of course, it is only a problem if you are operating
on a nonvolatile resource. I am always amazed how often we
don’t take this into account in our designs. Imagine the simple
case of writing an important parameter in its primary location
and its back up. You carefully lock out other tasks from touch-
ing the parameter (e.g., change the primary, change the back
up, and then unlock the access). You think you have created an
atomic operation and prevented normal concurrency from
affecting your design. But have you covered the case where the
system powers down or crashes between writes? You now have
inconsistent data on your system. When you power up, which
one is correct, the primary or the back up? It is not enough to
make the operation atomic under normal operation. You must
make it atomic across system crashes or power outages.

One solution is to provide some sort of nonvolatile “dirty”
indicator to each element. The steps are to set the dirty flag for
the primary element, write the primary, clear the dirty flag for
the primary element, write the dirty flag for the back-up ele-
ment and write the back-up element, and clear the dirty flag for
the backup. At startup, if the dirty flag is set for one, you know
you cannot trust the data so you take the other.

An approach I have found useful in my designs is to ask
myself every time I modify something that is nonvolatile: What
happens to the system if this operation does not fully complete?

O
ct

ob
er

 2
01

2 
– 

Is
su

e 
26

7



conditions I created until it was too late. Once identified, start
asking yourself: What if this device responds much more slow-
ly? What if this gets interrupted? What resource (HW or SW)
under me can change during this operation? Can I design this
in an order-independent manner? 

Preallocation. If possible, allocate or reserve all the resources
necessary for an operation before you start the operation. 

Identify the ordering. Use timestamps or sequence numbers
in operations where appropriate. My maxim is, “Use of
sequence numbers or timestamps covers a multitude of evils.”
This is especially true in networking. With load-balancing
servers and powerful multithreading in the devices you are talk-
ing to, you can be surprised at the order your data comes back
to you.

Protect against preemption. Any code that must require spe-
cific ordering (again avoidance is the best medicine) that deals
with external shared resources should be protected to guaran-
tee this specific ordering. 

Test, test, and test some more. Purposely shake up the test-
ing order (i.e., stress test the identified sections). For example,
if you can significantly add or reduce delays and response times
of the hardware or software that is being shared you may
uncover race conditions you have missed. I highly recommend
testing on as many different hardware platforms as possible. I
have another maxim: “For every order of magnitude increase in
production, you discover another problem in your perfect sys-
tem.”

DURABILITY
Durability means that once an action is taken it is taken.

Sounds like a Yogism. When using an operating system or a file
system, remember there is concurrency you don’t even know
about. We had an issue with a JFFS2 system on Linux where we
would write a variable to a flash file system file prior to reboot-
ing. We did this to let the system know the state of the system
from the last boot when it powered up. We wrote the variable,
flushed the cache, synched the file system (fsync), and the vari-
able was still not there occasionally when we came up. Once the
action was taken, it was not really taken. We then discovered
that we needed to fsync the directory file as well. This closed a
few more holes. Finally, one more note in the API said: “If the
underlying hard disk has write caching enabled, then the data
may not really be on permanent storage when fsync() returns.”
Oh great! So much for durability. Our solution was to dismount
the file system and remount it read only. Finally, the underlying
file system cooperated. The moral of the story: Not all actions
taken are taken!

KNOWLEDGE = POWER
Most systems have concurrency in them. You must under-

stand it in order to plan for it. The more concurrency you build
into the system, the more complexity you are bringing to the
table. Rigorous and thoughtful designs are hard to achieve but
well worth the effort.

Next time I will examine building concurrency into an embed-
ded Linux system. I

46

O
ct

ob
er

 2
01

2 
– 

Is
su

e 
26

7

CIRCUIT CELLAR® • www.circuitcellar.com

REFERENCE
[1] Wikipedia, Therac-25, http://en.wikipedia.org/wiki/
Therac-25.

RESOURCES
B. Japenga, “Concurrency in Embedded Systems (Part 1):
An Introduction to Concurrency and Common Pitfalls,”
Circuit Cellar 263, 2012.

———, “Concurrency in Embedded Systems (Part 2):
Atomicity and TOCTTOU,” Circuit Cellar 265, 2012.

M. Barr, “Firmware-Specific Bug #1: Race Condition,”
Embedded Gurus, 2010.

Bob Japenga has been designing embedded systems since
1973. In 1988, along with his best friend, he started MicroTools,
which specializes in creating a variety of real-time embedded
systems. With a combined embedded systems experience base
of more than 200 years, they love to tackle impossible problems
together. Bob has been awarded 11 patents in many areas of
embedded systems and motion control. You can reach him at
rjapenga@microtoolsinc.com.


