
CASE STUDY #1: SHARED MEMORY
After a brief amount of preplanning for this arti-

cle, I was called into a meeting to discuss a prob-
lem we were having during the alpha testing of a
new product. The problem manifested itself in one
of our embedded systems by reporting bad data to
its host. The system was measuring energy usage
in kilowatt hours and reporting this data to a
remote host. Our interface contained a Maxim Inte-
grated Products 71M6533 Teridian energy-meter-
ing IC that we talked to over a SPI bus. This is a
powerful energy-monitoring chip that can be used
to measure power in three phase electrical sys-
tems. This chip was programmed by another ven-
dor to provide a memory interface we accessed
over SPI. Both subsystems access this shared

68 CIRCUIT CELLAR® • www.circuitcellar.com

A
ug

us
t

20
12

 –
 I

ss
ue

 2
65

Concurrency in Embedded
Systems (Part 2)

The first part of this article series introduced the topic of concurrency
in embedded systems. This article discusses two of the most common
problems in embedded system designs containing concurrency: using
nonatomic operation in concurrent threads and time-of-check-to-time-
of-use (TOCTTOU).

I

by Bob Japenga (USA)

n the first part of this article series, (“Concur-
rency in Embedded Systems Part 1: An Intro-

duction to Concurrency and Common Pitfalls”, Cir-
cuit Cellar 263, 2012), we defined concurrency as a
common feature found in embedded systems. We
saw that concurrency takes place any time two or
more activities can happen in the same time seg-
ment. We saw that these concurrent operations
only cause problems when they interact with each
other. We looked at some of the common pitfalls
that happen with such systems and discussed, in
thin slices, how priority inversion can happen and
what you can do to prevent it.

As I sat down to write this article, I was thinking
about the other common pitfalls I mentioned last
time and asked myself: “Which one do I want to
talk about this month?” I decided to discuss how
nonatomic operations wreak havoc in our embed-
ded systems and how to prevent the chaotic situa-
tion. I’ll also discuss a somewhat related issue:
time-of-check-to-time-of-use (TOCTTOU).

DEFINITIONS
Let’s start with some definitions. An atomic oper-

ation is any operation that cannot be interrupted by
another operation. In a microprocessor, most sin-
gle-assembly instructions cannot be interrupted
until they complete their operation. If you design
embedded systems, you should know which opera-
tions you use are atomic whenever you are operat-
ing on a shared resource. Using nonatomic opera-
tions on shared resources leads to the generation
and use of noncoherent data in our systems.

EMBEDDED IN THIN SLICES

Concurrency, Atomicity, and TOCTTOU

HELPFUL DEFINITIONS
Atomic operation: An operation that is non-
interruptible by any other operation and
never presents partial results to an outside
observer
Alpha testing: Testing performed by an
independent team on a system installed at a
place other than the targeted customer’s site
Shared resource: Any provider of informa-
tion that is read or written to by separate
threads
KYZ pulse: In a mechanical electrical meter,
a pulse that changes state every half rotation
of the meter’s disk and represents a quanta
of energy

www.circuitcellar.com • CIRCUIT CELLAR®

69

A
ug

us
t

20
12

 –
 I

ss
ue

 2
65

them on the screen or log them to a log file.
The problem was that occasionally the KYZ_counter data

would be wrong when sent to the host on the display or in the
log. How could this happen? This happens because increment-
ing the KYZ_counter_1 (as well as counters 2–4) was not an
atomic operation even though it was a single C instruction.
Underneath this one C instruction would be a half a dozen 8051
instructions—any of which could be interrupted. As we saw pre-
viously, the problem will occur anytime one of the 8-bit portions
of the 32-bit number rolls over from 0xFF to 0x00 after it has
interrupted a nonatomic read of the data. If the same code was
ported to a 32-bit ARM9 processor, which has atomic 32-bit
operations, there would be no problem.

CASE STUDY #3: READING A 16-BIT
COUNTER ON AN 8-BIT PROCESSOR

I first ran into this problem while working with a 16-bit count-
er in a single-threaded program running on an 8-bit processor.
As we saw in Part 1 of this article series, sometimes the concur-
rency occurs in hardware as we will see in this case.

The design had a 16-bit counter used to count bottles going
down a conveyor. The counter was read by an 8-bit processor
in two operations. The counter updated in nanoseconds and the
processor read the counter in two 8-bit reads about 1 µs apart.
Hopefully you see the scenario coming. The counter is sitting at
0x1FF when the processor reads the low-order byte (0xFF). By
the time the processor has read the high-order byte, the count-
er has incremented to 0x0200. Thus the processor sees 0x02
and sets the counter to 0x2FF rather than either of the two cor-
rect results: 0x200 or 0x1FF. You just processed 255 extra bot-
tles.

WHAT ARE SOME SOLUTIONS?
There are four basic solutions to avoid these kinds of pitfalls:

Don’t share memory unless absolutely necessary. Remember,
concurrency problems only manifest when we share resources.

memory interface at a 1-Hz rate (see Figure 1). After some
analysis, we concluded that the problem could be caused by a
classic nonatomic concurrent operation. Let me explain by over-
simplifying the details while maintaining the essence of the
problem.

We read cumulative energy usage created by the Maxim
energy chip with a 4-byte read of a shared memory region over
SPI. An 8051 core inside the energy chip writes to this 4-byte
region. Since both our 4-byte read and the 8051’s 4-byte write
were interruptible (nonatomic), at times we could get incoher-
ent data. An example is shown in Table 1.

The end result is that, in a sequence of reads, we would
obtain energy readings of:

255
512
256

The error compounds if the collision occurs on the rollover of
the second, third, or fourth byte. Of course those occur far less
frequently than my example. This doesn’t happen often, but
with more than 2.5 million s in a month and more than 100,000
m in the field, it only has to happen once in 250 billion reads to
happen once a month.

CASE STUDY #2: INCRE-
MENTING A COUNTER

Many years ago, we ported some
code from a customer’s energy-mon-
itoring system to a new platform they
were developing. The system consist-
ed of a single loop with one timer
interrupt routine. Thus there were
two concurrent threads. The most
critical piece of information was the
total energy read from each of four
separate channels. In the timer
thread, four KYZ pulses indicative of
energy were polled and incremented
in a 32-bit word each time a low to
high transition was made. The soft-
ware was written in C. The processor
was an 8051 derivative.

The timer thread would have code
like what is shown in Listing 1.

The background thread would send
the KYZ_counter to the host, display

Table 1—Our 4-byte read and the 8051’s 4-byte read. At times, both reads were nonatomic, resulting in
incoherent data.

8051/Maxim Operation Our SPI Read Byte Memory Location

contents

8051 writes byte 1 of 0x000000FF 0x00 0x00000000FE

8051 writes byte 2 of 0x000000FF 0x00 0x00000000FE

8051 writes byte 3 of 0x000000FF 0x00 0x00000000FE

8051 writes byte 4 of 0x000000FF 0xFF 0x00000000FF

1 s later, the 8051 writes byte 1 of

0x00000100

0x00 0x00000000FF

8051 writes byte 2 of 0x00000100 0x00 0x00000000FF

8051 writes byte 3 of 0x00000100 0x01 0x00000001FF

Our system reads byte 1 0x00 0x00000001FF

Our system reads byte 2 0x00 0x00000001FF

Our system reads byte 3 0x01 0x00000001FF

Our system reads byte 4 0xFF 0x00000001FF

8051 writes byte 4 of 0x00000100 0x00 0x0000000100

1 s later, our system reads byte 1 0x00 0x0000000100

Our system reads byte 2 0x00 0x0000000100

Our system reads byte 3 0x01 0x0000000100

Our system reads byte 4 0x00 0x0000000100

Figure 1—Our system used a
SPI bus to talk to a Maxim
Integrated Products 71M6533
Teridian energy-metering IC.
Both systems access this
shared memory interface at a
1-Hz rate.

Our system

ARM3

Read
SPI

Maxim 71M6533

8051
Core

Write

Compute
Engine
(DSP)

Shared memory
XRAM

been fully booked by someone else.
Let’s take an in depth look at the third solution above (busy

bit) and show where this breaks down because of TOCTTOU
issues. If we apply this solution to Case Study #1, the condition
that could occur is shown in Figure 2.

In this case, even with the busy bit, because of TOCTTOU, the
SPI gets incoherent data (0x2FF instead of either 0x1FF or
0x200). The SPI reads the busy bit (time-of-check) and takes
action on the busy bit (time-of-use) and the SPI has some bytes
from the first sample and some from the second.

WHAT ARE SOME SOLUTIONS TO TOCTTOU?
A simple solution to this would be to use a more complicated

busy indicator which is really an 8-bit counter where the low-
order bit indicates busy.

The writing device would do the following:

flag |= 0x01;
WriteData();
flag++;

Note: OR a 1 into the flag instead of using flag++ to guaran-
tee synchronization. The reading device results are shown in
Listing 2. Now we would be protected from incoherent data
regardless of the overlaps of reading and writing the shared
resource.

CONCLUSION
Concurrency issues can create nightmarish problems for

embedded systems designers. The designer of the software in
the energy chip did not carefully think through the implications
of having three devices all reading and writing to a common
shared memory when the interface was created. We were using
the interface and didn’t know that it was a shared-memory
interface. The problems of nonatomic operations and TOCTTOU
issues on shared resources can create problems that are like
hurricanes in Hartford, CT—they hardly ever happen, but when
they do… I

Figure 2—A potential condition that could occur when the solution that
involves building an indication of the concurrency of the data is applied to
Case Study #1.

70 CIRCUIT CELLAR® • www.circuitcellar.com

A
ug

us
t

20
12

 –
 I

ss
ue

 2
65

Make all operations on shared resources atomic (noninter-
ruptible) by using some kind of locking mechanism. For exam-
ple, in Case Study #2, you would want to lock out any reads
while the data was being read or written (perhaps by disabling
interrupts). Or in our simple single-loop system, you could cre-
ate a snapshot of the data at the top of the loop with interrupts
disabled and then freely use this coherent snapshot of the data
throughout the loop. In Case Studies #1 and #3, that was
impossible because the 8051 code was written by a vendor.

Build an indication of the coherency of the data into the struc-
ture. Using the hardware model, we could provide a busy bit on
the data structures indicating that the data structure is being
changed. Before changing the data, set the busy bit. After writ-
ing the data, clear the busy bit. It is also good practice to define
the maximum amount of time the busy bit can remain set.
Again, we didn’t control the 8051 in Case Study #1. As noted
in the next section, we will see how this too must be carefully
used. In Case Study #2, we could create a data structure with
a header, the KYZ counter and a footer sequence number.

Use multiple reads. If the writing of the data is slower than
the rate you are reading it, you can perform multiple reads
looking for coherent data. This is the least deterministic of the
solutions. It would work well in Case Study #3.

TOCTTOU
The final concurrency issue we will look at this month sounds

more like a South American bird. TOCTTOU (pronounced “tock
too”) vulnerability occurs when data being used changes after
you read it. Perhaps the simplest commonplace example of how
this can happen in everyday use is in an airline reservation. The
user looks at what flights are available at 7:00:00 (time-of-
check) but then attempts to book the once-available flight at
7:01:00 (time-of-use) and is rejected because the flight has

Listing 1—Time thread code

if (KYZ_1 != KYZ_1_last_value)
{

KYZ_counter_1++;
KYZ_1_last_value = KYZ_1;

}

The data is 0x000001FF
SPI reads busy bit and it is not set (Time-of-check)
8051 sets the busy bit
SPI reads byte 1 as 0xFF (Time-of-Use)
8051 writes byte 1 as 0x00
8051 writes byte 2 as 0x20
SPI reads byte 2 as 0x20
8051 writes byte 3 as 0x00
8051 writes byte 4 as 0x00
SPI reads byte 3 as 0x00
8051 clears the busy bit
SPI reads byte 4 0x00
SPI reads busy bit and it is not set

Listing 2—Results of the reading device

flag1 = ReadTheFlag();
if (flag1 & 0x01 == 0)
{

ReadData();
if (flag1 == ReadTheFlag())
{

// Use the data
}
else
{

// Wait and try later
}

}
else
{

// Wait and try again later
}

www.circuitcellar.com • CIRCUIT CELLAR®

71

A
ug

us
t

20
12

 –
 I

ss
ue

 2
65

Bob Japenga has been designing embedded systems since
1973. In 1988, along with his best friend, he started Micro-
Tools, which specializes in creating a variety of real-time
embedded systems. With a combined embedded systems
experience base of more than 200 years, they love to tackle
impossible problems together. Bob has been awarded 11
patents in many areas of embedded systems and motion con-
trol. You can reach him at rjapenga@microtoolsinc.com.

RESOURCE
B. Japenga, “Concurrency in Embedded Systems Part 1:
An Introduction to Concurrency and Common Pitfalls,”
Circuit Cellar 263, 2012.

SOURCE
71M6533 Teridian energy metering IC
Maxim Integrated Products | www.maxim-ic.com

