
work for a small company that does
embedded systems and software design.

When we started in the late 1980s, we had no
reputation outside our previous industries. In
order to get work, it was important for us to
establish our credibility and to demonstrate our
expertise. Here’s how we did that during those
early years.

After we got through the first level of vetting
with a new company (we weren’t criminals and
at least we talked a good story), our clients
would ask us for a proposal to either modify
their existing code or to create new code based
on the functionality of their old code. After the
exchange of a nondisclosure agreement, they
would send us their source code to enable us to
quote the job. During that process, I would
immediately look at their serial drivers because
I know this is an area that is usually prone to
errors. Most serial drivers are interrupt-driven
and thus require knowledge of how to design
concurrent threads in embedded systems. In our
own experience and in the experience of others,
we had seen that there were many possible pit-
falls. If we could [Editor word missing – help?]
our clients solve an existing problem quickly
and for no charge, I thought this would both
establish our credibility and demonstrate our
expertise. So I would briefly look in their code
for some of the common flaws we had both cre-
ated and seen throughout years of dealing with
interrupt-driven serial drivers. In almost 50% of
the cases, we were able to find a real problem in
their code—and it was always caused by con-

64 CIRCUIT CELLAR® • www.circuitcellar.com

Ju
ne

 2
01

2
 –

 I
ss
ue

 2
6
3

I

by Bob Japenga (USA)

Concurrency in Embedded
Systems (Part 1)

This is the first in a multi-part article series dealing with concurrency in
embedded systems. This article defines concurrency in embedded systems,
discusses some pitfalls, and examines one of them in detail.

Embedded Systems and Some of Their Pitfalls

EMBEDDED IN THIN SLICES

currency issues. Sometimes they were serious
and sometimes they were relatively harmless.

Getting concurrency right is not easy. Over
the next several articles, I will address the issue
of concurrency as it relates to embedded sys-
tems. In this article, I define concurrency, list
some of the common pitfalls, and look at one
of them in particular. I will address other com-
mon pitfalls in upcoming articles.

DEFINING CONCURRENCY
Concurrency takes place any time two or

more activities can happen in the same time
segment. For example, I can concurrently wash
the dishes, watch TV, and listen for a text mes-
sage on my phone. A phone can concurrently
listen for incoming calls while displaying a TV
program.

According to Wikipedia, in computer science,
concurrency is a property of systems in which
several computations are executing simultane-
ously, and potentially interacting with each

HELPFUL DEFINITIONS
Thread: Any functionality that can be
active during the same time segment. It
can be in hardware or software.
Blocked: When a software thread relin-
quishes control of the processor to the
operating system.
Preempt: When one thread interrupts
another.



multitasking OS you would put a
blocking delay at the end of the high-
speed thread. In addition, you would
enable the external thread to preempt
the UI loop. This means the external
device thread does not have to wait
until the UI thread is complete before
it can start. This could be done by giv-
ing the external device thread a higher
priority than the user input thread.
For example, if you are polling the
external input every 10 ms, you would
be “interrupting” the UI loop some
place in the code every 10 ms. With
interrupts on the external device, you
would basically be doing the same
thing without the need for a thread
delay. You would be “event-driven”
rather than periodically polling. But
you would still be interrupting the UI
thread every time the external device
changed. Finally, you could solve this
by using or creating hardware that
could obtain the external data while
the UI software is busy and go back to
your single-thread solution. Table 2
provides a look at solving it using the
multithreaded OS. Notice that the UI
thread never stops but polls continu-
ously (sometimes this is called the
idle thread). The external device
thread blocks (gives other threads the
opportunity to run) and thus effective-
ly polls the external input every 10 ms
(plus our processing time).

www.circuitcellar.com • CIRCUIT CELLAR® 65

Ju
ne

 2
01

2
 –

 I
ss
ue

 2
6
3

device, and a graphical user interface
(GUI). You can create such a system
with or without concurrency. You
could, for example create software
with a single loop as shown in Table
1.

We have seen literally scores of sys-
tems designed like this. Simple. They
work. No concurrency is necessary in
the software. But wait a minute.
There is concurrency in this system.
The user and the external device can
change things at the same time. That
means the system has concurrency.
But does the software need concurrent
threads to handle this? Well, that
depends. If the input changes more
quickly than our time to execute our
simple loop, we have a problem. If it
takes 100 ms to write to our graphics
display and our external input device
can do something every 20 ms, we
would miss critical data while going
through the loop. 

So how do we solve that? We could
start sprinkling I/O reads into the
middle of the graphics library, but that
is extremely messy. We could create
two concurrent threads in our system:
one to process the user interface (UI)
and one to process the external device.
In an embedded system this could be
accomplished in three ways: with a
multitasking operating system (OS),
with interrupts, or with hardware. In a

other.
Of course, if they don’t interact,

there are no pitfalls, but they are still
concurrent. However, they almost
always interact in some way and that
is what creates the problems. 

COMMON CONCURRENCY PIT-
FALLS

Any embedded system that has con-
currency built into its design can
experience one or more of the follow-
ing problems: race conditions, where
the order of execution affects the out-
come of a given result; corrupting of
shared resources, where shared
resources are used by two or more
concurrent threads; logical complexity
creating less than airtight algo-
rithms—the more things that can
affect each other, the more difficult it
is to carefully think your design
through and make it bullet proof;
deadlock, where functions stop work-
ing for no apparent reason; time-of-
check-to-time-of-use (TOCTTOU)—all
embedded software that monitors the
real world has to deal with this kind
of concurrency—I read the data from
an input and make a decision, but by
the time I use the data, the data has
changed; and priority inversion.

I will look at these conditions over
the next several articles. In this arti-
cle, I address priority inversion: what
it is and how to avoid it.

WHAT IS PRIORITY INVERSION?
Given the number of problems con-

currency has given me over the years,
I wondered how concurrency issues
ranked in the history of major soft-
ware failures. As I looked over various
lists of “the worst software bugs” I
found that only a few of them directly
involved these common pitfalls. The
Mars Pathfinder bug was one of them.
Initially flawless in its fulfillment of a
very complicated mission, early on,
the Pathfinder began experiencing
periodic resets and the subsequent loss
of data. The cause was a classic case
of priority inversion.

To illustrate concurrency and how
priority inversion can happen in an
embedded system, I’ll create a very
simple embedded system with one
input, one output, a very fast logging

Table 1—Steps that single-loop software may take in a design without concurrency built into it

Table 2—Steps that a user input thread and an external device thread may take in a system
design with two threads

Our Example Design with Two Threads

User Input Thread External Device Thread

Check for user input Check to see if something changed in the external world

(input changed state or character received)

Process the user input Process the changes from the input from external world and set 

the output accordingly

Update the display Log the external data to our logging device when free

Log the user data to our

logging device when free

Block for 10 ms

Rinse and repeat Rinse and repeat

Our Example Design Without Concurrency in the Design

Check to see if the user has hit a key

Output the new display as a result of the key press (takes about 100 ms)

Check to see if something changed in the external world 

Process the changes from the input from external world and set the output accordingly

Log the user input and the output state to our logging device (takes about 50 ms)

Rinse and repeat



66 CIRCUIT CELLAR® • www.circuitcellar.com

Ju
ne

 2
01

2
 –

 I
ss
ue

 2
6
3

We now have a complexity that both threads share the
same logging device and cannot use it at the same time. So
they would need to wait for the other to complete before
use. But that is no problem since it is a fast device and
thus neither thread will be unable to perform if it has to
wait even the maximum amount of time (50 ms). 

We deliver our masterpiece to marketing and they are
happy with one exception. They want to make this an
Internet appliance. They want to send data periodically to a
web server and to receive responses back from the web
server. We will need to check to see if we have data every 5
s. Now we have to add a third concurrent thread. This will
be a medium-priority thread that sends the data to the
Internet. It needs to respond more quickly than the UI but
more slowly than the external data interface (see Table 3).

We have now set up the classic case for priority inver-
sion to occur and we will occasionally miss critical data
(albeit rarely). Here is how it happens. The low-priority UI
thread is writing to the log device when the high-priority
device wants to write to it. So the high-priority thread
blocks waiting for the device to become free. During that
tiny window, the medium-priority thread preemptively
interrupts the low-priority thread and runs for 100 ms thus
blocking the high-priority thread from recording a critical
transition of its input. Because it happens so seldom, this
would probably never be found during testing. Only after
we deliver the first 10,000 units to the field would this be
reported. 

PREVENTING PRIORITY INVERSION
There are two primary ways of preventing this from hap-

pening. The first involves locking out preemption during
critical sections of code. This can be done by locking out
interrupts or through some OS-locking mechanism. In our
example, we would place these locks in the low-priority
thread around the use of the shared resource: the logger.
When the low-priority thread logged our data, it would pre-
vent anyone from preempting the low-priority thread until
complete. This would prevent a higher-priority thread from

preempting a lower-priority thread when
it is dealing with a shared resource. 

The second and less complex (for the
designer) method is to let the OS prevent
this from happening by using either priori-
ty inheritance or the priority ceiling tech-
niques with shared resources. This would
mean that any time a shared resource is
used by any thread, that thread would
take either the highest priority of the
threads using the shared resource (priority
inheritance) or the priority assigned to the
resource (priority ceiling). There are prob-
lems with these features affecting latency,
but they are beyond the scope of this arti-
cle.

Any POSIX-compatible OS (including
QNX, VxWorks, and Linux) has priority
inheritance built in and it is well worth

any real-time system designer’s time to become very famil-
iar with how this is used in their OS.

MANAGING CONCURRENCY REQUIREMENTS
Most systems we design have concurrency requirements

in them. It is our job as system designers to identify them
and then create designs that robustly handle this concur-
rency—at times adding concurrency into our software. We
need to be aware of the dangers of both implementing con-
currency and the dangers that the solutions can cause as
well. Next time I will look at some more pitfalls of concur-
rency in embedded systems. I

Table 3—Steps that a user input thread, a network thread, and an external device thread
may take in a system design with three threads

Our Example Design with Three Threads

User Thread 

(Low Priority)

Network Thread 

(Medium Priority)

External Device Thread (High Priority)

Check for user input Check to see if there

is data to be sent

Check to see if something changed in

the external world (input changed state

or character received)

Process the user

input

Send the data over

the Internet to the

host

Process the changes from the input from

external world and set the output

accordingly

Update the display Wait for the response

for up to 100 ms

Log the external data to our logging

device when free

Log the user data to

our logging device

when free

Block for 5 s Block for 10 ms

Rinse and repeat Rinse and repeat Rinse and repeat

Bob Japenga has been designing embedded systems since 1973. In
1988, along with his best friend, he started MicroTools, which specializes
in creating a variety of real-time embedded systems. With a combined
embedded systems experience base of more than 200 years, they love
to tackle impossible problems together. Bob has been awarded 11
patents in many areas of embedded systems and motion control. You
can reach him at rjapenga@microtoolsinc.com.

RESOURCES
Computerworld, Inc., “Epic Failures: 11 Infamous Soft-
ware Bugs,” 2010, www.computerworld.com/s/
article/9183580/Epic_failures_11_infamous_software_
bugs?taxonomyId=18&pageNumber=1. 

N. Dershowitz, The Blavatnik School of Compute Sci-
ence, Tel Aviv University, “Software Horror Stories,”
www.cs.tau.ac.il/~nachumd/verify/horror.html.

S. Garfinkel, Wired Magazine, “History’s Worst Soft-
ware Bugs,” 2005, www.wired.com/software/
coolapps/news/2005/11/69355?currentPage=all. 

M. Jones, Microsoft Corp., Microsoft Research, “What
Really Happened on Mars?” 1997, http://research.
microsoft.com/en-us/um/people/mbj/mars_path
finder/mars_pathfinder.html.


