
CIRCUIT CELLAR • JUNE 2019 #34760
CO

LU
M

NS

B oth of our cars are more than 15
years old. My only new car envy
is with the lack of a modern audio
system. With a rental car, I’m

always envious of the Bluetooth support and
the seamless way I can connect and reconnect
my phone to the car’s system. Most of the
new audio systems are well thought out and
easy to use. For my birthday, I got a Bluetooth
device that would connect my phone to my
dumb audio system in both cars. I have been
very happy with the devices although they
have two quirks. One is that they don’t work
when the car has been left outside and it’s
below zero. After the car warms up, it will
happily function. But it doesn’t like subzero
temperatures.

The other quirk—pointed out by my
grandchildren—is that when it powers up, it
announces: “Waiting for Pairing.” And then
when it is paired, it reports “Paired.” The
quirk is that instead of saying “Waiting for
Pairing” it sounds like it is saying “Waiting for
Perry.” The first time my grandkids were in
the car, they asked: “Who is Perry and why
are we waiting for him?” Now I can only hear
“Waiting for Perry” when I turn on the car.

Pairing is the way two standard Bluetooth
devices establish the initial link for one-
to-one networking (Figure 1). Bluetooth
mesh needs a much more sophisticated and
secure method of linking the many-to-many
network. That method is called provisioning.
I introduced Bluetooth mesh provisioning in
my last article (Circuit Cellar 345, April 2019)
[1]. So, if you haven’t read that article, as a

minimum, it will be important to go back to
understand the terms that were defined in
that article and which I will be using in this
article.

As I mentioned last time, the Bluetooth
specification [2] states that only if an Out-of-
Band (OOB) public key is used or if an OOB
action is taken to pass the public key (using
user supplied information), “provisioning is
Insecure Provisioning.” This statement will
basically jettison any project that does not
use one of these two OOB methods when
presented to a savvy IT group. It did for us.
Imagine presenting to your CEO a new product
line using Bluetooth mesh that doesn’t use one
of these two methods. Most likely the savvy
CEO will ask: “What is the projected return on
our investment?” AND “Is it secure?” Would
you want to say: “Well, we are using Insecure
Provisioning but other than that it is secure?”

I’m not convinced that the specification is
entirely accurate in this statement and would
appeal to the Bluetooth SIG to reconsider
their wording. I want to elaborate on this
idea in this article and provide some means
for making provisioning secure without using
either of the two OOB methods to pass the
public keys.

MAN-IN-THE-MIDDLE
As I mentioned last time, Bluetooth

uses asymmetric key encryption during the
first part of provisioning. Asymmetric key
encryption has one basic security flaw. It is
subject to what is called a Man-in-the-Middle
(MitM) attack. Let me illustrate this attack.

Embedded in Thin Slices

Bluetooth Mesh (Part 3)

By
Bob Japenga

Secure Provisioning

In this next part of his article series on Bluetooth mesh, Bob looks
at how to create secure provisioning for a Bluetooth Mesh network
without requiring user intervention. He also takes a special look at
an attack called Man-in-the-Middle which Bluetooth’s asymmetric
key encryption is vulnerable to.

circuitcellar.com 61
CO

LU
M

NS

Imagine that Bob and Barbara are happily
married. I know, normally everyone uses Alice
in these illustrations, but my wife’s name is
Barbara. They want to communicate some
secret birthday plans about their grandson
Sean. So, they both send over clear text
their public keys (B1 and B2) (Figure 2). Bob
encrypts all of his messages with Barbara’s
public key B2, and sends them to Barbara.
Barbara decrypts all of Bob’s messages using
her private key B2P. Barbara sends all of her
messages to Bob using Bob’s public key B1
to encrypt the data. Bob decrypts Barbara’s
messages with Bob’s private key B1P.

Imagine that grandson Sean is a curious
computer whiz and wants to know what’s he
is going to get for his birthday. He intercepts
the public key exchange B1 and B2 between
his grandparents. Instead of passing on
their public keys, he sends them his public
key S1. So, when Bob and Barbara send their
messages encrypted with S1 to each other
he intercepts them and decrypts them using
his private key S1P since they are encrypting
their messages with his public key S1. He
finds out what he is getting for his birthday
and then encrypts the messages using Bob
and Barbara’s public keys and sends them
back to them. Bob and Barbara are clueless
to the fact that Sean now knows what he is
getting for his birthday.

That example illustrates that, if during
the provisioning process, the public keys
are not exchanged OOB, the process would
be insecure because they would be subject
to a MitM attack. However, during normal
asymmetric key encryption, the way this
can be prevented is through authentication.
If Bob can know that a key is authentically
from Barbara, he would immediate recognize
that the key that Sean sent was not from
Barbara. During normal Internet asymmetric
key encryption this authentication is done

through Certificates of Authority created by a
trusted signing authority.

The Bluetooth provisioning process
includes authentication of the device as part
of the process. Authentication can either be
using an OOB technique or without OOB. So,
I would contend that if you use some means
of authenticating that does not transfer the
credentials over the Bluetooth network, your
provisioning process would be secure in spite
of what the Bluetooth specification says (I am
definitely treading on thin ice here!).

POSSIBLE OOB AUTHENTICATION
Obviously, the more user intrusive OOB

methods (input, output, NFC) would work
(Figure 3). But what kinds of Static OOB
techniques could you use so that you would
not require a user interface or user interaction
during provisioning. Let me propose a few,
but there are many other ways.

Unique Device Identifier: As part of the
beaconing process (described in my April
article), the unique device identifier (UUID)
is passed to the provisioner. This identifier
is much like a MAC address and is unique to
the Bluetooth radio. It is 16 octets long. Each
device (including the provisioner) could have a
secret algorithm to hash this UUID. This hashed
UUID can be used as a private key to encrypt
and decrypt the public key thus providing
authentication. This would provide Static OOB
authentication. In all likelihood, the provisioner
will be connected to the cloud and have a list
of the devices that are going to be installed.
This was the case with one system on which we
worked. This was necessary for the provisioner
to create a map of the installation—to show
where each device was located throughout the
building. This was used for maintenance as well
as normal operation.

Secret Number: The device could have its
own unique authentication value known to

FIGURE 1
Pairing is the way two standard
Bluetooth devices establish the initial
link for one-to-one networking.

CIRCUIT CELLAR • JUNE 2019 #34762
CO

LU
M

NS

the provisioner. This could be used like the
UUID in the above example. This secret could
also be the same in all devices but I would
recommend a unique secret per device.

These are just a sample of the ways this
could be done. The key point is that non-
OOB passing of the keys plus static OOB
authentication would be secure in spite of
what the Bluetooth specification says. No
matter how you pass the initial keys—with
or without OOB—there are three things that
are also in your favor to prevent an MitM
attack: the extreme difficulty of mounting an
MitM attack, the actual damage that the MitM
causes and your ability to detect it when it
happens. Let’s look at each of these.

MANAGED FLOODING
Part of providing realistic security

measures is the understanding that MitM
attacks are not easily achieved. One of
the challenges of mounting a MitM attack
is in that simple word “intercept” in my

description. Imagine someone mounting
an MitM attack between your browser and
your bank in order to get your credentials.
Their first line of attack might be your Wi-Fi
network in your home. The attacker pulls up a
van next to your house and starts listening to
your Wi-Fi traffic. Assuming it is unencrypted
(heaven forbid) or that the attacker obtains
the pass key, the attacker can read all of the
data passed between you and your router.
The attacker still has the problem of trying
to intercept the communication between your
browser and the bank. This is non-trivial.

But imagine you were trying to perform
this non-locally. How does one intercept your
message in the mesh network called the World
Wide Web? Certainly, if you replaced the name
server you could redirect all requests between
you and the bank to you. But without insider
help that is non-trivial. Hijacking one of the
World Wide Web routers would be another to
intercept your traffic. But this would require
serious resources.

Let’s switch back to the Bluetooth mesh
network, which is not a routed mesh network
like the World-Wide-Web but uses managed
flooding. Managed flooding was described
in Part 1 of this article series (Circuit Cellar
343, February 2019). It has no name servers.
There are no routing tables to manipulate. This
means that all messages go out to all devices
that relay messages not for them, and answer
messages that are for them. The route can
be different on every transmission. Imagine
mounting a MitM attack in this environment.
One of the outer devices issues its beacon to
start the provisioning. You are the attacker
sitting on a shelf in a big box store. You have
to be positioned such that you get the message
before the Provisioner does. And then you
have to be able to intercept the subsequent
messages before the Provisioner. Although that
is possible, it is non-trivial. I would love to see
some researcher actually document how a real-
world MitM attack can be made on a managed
flooding Bluetooth mesh network. It seems like
it would not work deterministically.

ASSETS LOST WITH MitM
Putting aside the technical challenges of

mounting an MitM attack, let’s assume that
they are actually successful in mounting the
attack. What do they have? The private network
key and one device key and one application
key (we will discuss these next time). If you
design your network correctly, they can only
decode one device’s data. You certainly can
perform nefarious functions like sending bad
data for one device. If you evaluated the assets
that you want to protect (as described in my
August 2018 article, Circuit Cellar 337 [3]) you
may find that the risk of harm is very slight

For detailed article references and
additional resources go to:
www.circuitcellar.com/article-materials
References [1] through [3] as marked in the article can be found there.

FIGURE 2
Shown here is an example exchange that would be insecure because it would be subject to a Man-in-the-
Middle attack. However, during normal asymmetric key encryption, the attack can be prevented through
authentication.

circuitcellar.com 63
CO

LU
M

NS

from a successful MitM attack. Obviously, this
is dependent upon your application. Between
you and the bank, much harm can be caused.
But in the applications that we have evaluated,
the risk of harm from a successful MitM attack
is very slight. And the major risks are that the
attacker has the ability to disrupt the network.
For example, between one lighting fixture
and the host, a successful MitM attack could
cause no more harm than a simpler brute force
attack which would be simple to perform. If
some hacker wanted to disrupt your network, it
would be much easier and more deterministic
to just create a bunch of devices that flood
the Bluetooth radio cloud with so much noise
that the network becomes non-functional. Hide
three of those on shelves in the big box store
and you simply shut the network down.

TAMPER DETECTION
There are two ways to guard against a MitM

attack. One is authorization and the other is
tamper detection. Every system will be different,
but I am convinced that you can design most
Bluetooth mesh systems to detect MitM attacks.
Remember our earlier article about IoT security
where we said: “Don’t put all your eggs in one
security basket.” Design your secure network
like you would protect your castle. You have the
moat, the wall, the fortified door, the boiling
oil and your warriors. Even if you design your
system using OOB key transmission and OOB
authentication, don’t believe the Bluetooth SIG
that you are secure. You should still provide
checks for tampering. Let me illustrate a few
methods for detecting a MitM attack.

Imagine that you are replacing an existing
unit in the big box store. The new device needs
provisioning. Imagine further that an attacker
mounts a successful MitM attack in spite of the
fact that you are doing everything in a secure
fashion. There is a chance that there are some
markers that might indicate a security breech.
Most likely the MitM device will alter the route
time and number of hops. Another way is
that with managed flooding the device may
occasionally take a different route by-passing
the MitM and the edge gateway would get a
message from the device encrypted with the
the device’s private key instead of the MitM’s
private key. Your provisioner/gateway should
be designed to report errors that might be
caused by a MitM attack.

CONCLUSION
The Bluetooth mesh specification says that

only if you exchange your public keys over OOB
can provisioning be secure. I contend that, with
OOB authentication similar to what I outlined
here, you can have secure provisioning. I invite
anyone to help me see otherwise. This stuff is
complex and it is easy to miss things. In

addition, I contend that MitM attacks are
probably not where a hacker will attack your
network. In addition, tamper detection needs
to be provided in your system to help you plan
for the unexpected. Of course, this is easy for
me, because I am writing this in thin slices.
When you design these networks, you have to
have the whole pie.

ABOUT THE AUTHOR
Bob Japenga has been designing embedded
systems since 1973. In 1988, along with his
best friend, he started MicroTools, which
specializes in creating a variety of real-
time embedded systems. MicroTools has a
combined embedded systems experience
base of more than 200 years. They love
to tackle impossible problems together.
Bob has been awarded 11 patents in
many areas of embedded systems and
motion control. You can reach him at
rjapenga@microtoolsinc.com.

FIGURE 3
Shown here are three types of Out-of-Band (OOB) authentication:
NFC, input and output. But these are user intrusive. In contrast,
Static OOB techniques have the advantage that they don’t
require a user interface during provisioning.

