50 CIRCUL| €ELLAR » APRIL 2019 #345

W

Embedded in Thin Slices

Fe

p"‘ii !;_'__-_' I“" :

v

Continuing his article series on Bluetooth mesh, this month Bob
looks at the provisioning process required to get a device onto
a Bluetooth mesh network. Then he examines two application

examples and evaluat

By
Bob Japenga

COLUMNS

FIGURE 1

We once worked with one of our
client’s designers on a process control
system using IBM's 0S/2 operating
system. The design had an elegance
that reminds me of the Bluetooth
mesh specification.

1/, 'Hi 1

number of years ago we were

working with a company on

an 0S/2 system. Does anyone

remember that operating
system by IBM? For a number of years, our
company standardized on 0S/2 for all of our
desktops (Figure 1). Eventually Microsoft
crushed the competition for the desktop
market and made it impossible for us to
continue using 0S/2. We were working with
one of our client’s designers on a process
control system using 0S/2 [1]. After several
weeks of interaction with this designer,
I was still not sure if his basic design and
the architecture of his software was pure
spaghetti code or if it was a magnificent
and complex architecture that I just couldn’t
understand. After several months, I think I
finally settled on the fact that it was a bit of
both. But the elegance of the design escaped
me for quite a while.

This reminds me of reading the Bluetooth
mesh specification. I am not sure if I am
looking at a mishmash of ideas thrown
together or an elegant masterpiece that I
am missing because of the complexity. Given
the team that was involved in creating the
specification, I lean towards the elegant
masterpiece. But let it be known that, for

es the various options for each example.

me, it's a real challenge to figure out how
things are supposed to work from the
documentation provided.

I will make an attempt over the next several
articles to help all us better understand how
Bluetooth mesh works so we can determine
if it is applicable to the project on which we
are working. I hope to distill down the basic
concepts and provide guidelines as to how we
can apply this new technology. Hopefully I
don’t muddy the waters and make things less
clear with my own mishmash of ideas.

DEFINITION OF TERMS

Provisioner: A Provisioner on a Bluetooth
mesh network is the device that manages
the provisioning process. Although multiple
Provisioners are allowed on the network, the
method of transferring the provisioning data
is implementation specific. This means that
there will probably be work to switch suppliers
of the Bluetooth radio in the Provisioner if you
use multiple Provisioners.

Provisioning: Provisioning is the steps
performed to add an unprovisioned device to
a Bluetooth mesh network. The provisioning
process accomplishes two goals: Authenticate
the device (confirm that it is a device that is
supposed to be on the network) and create the

secure link (keys, algorithms, randomization
information) to enable the device to join the
mesh network.

Provisioning Data: This is the data that is
exchanged during provisioning between the
Provisioner and the device that is being added
to the network. Among the things it includes
are the network key, the address of the device
and a number (IV Index) that is used to create
a unique identifier for each message.

Symmetricand Asymmetric Key Encryption:
These are the two basic types of encryption.
Symmetric key encryption uses the same
key for both encrypting and decrypting a
message. Asymmetric key encryption (also
called Public key encryption) uses a public and
private key pair that each party generates
separately (Figure 2) [1]. The public key can
be sent to anyone unencrypted (also called “in
clear text”). They can then encrypt messages
with this public key and only the holder of
the private key can decrypt the message.
(Figure 3). The Bluetooth SIG chose to use
the computationally less expensive symmetric
encryption during normal networking where
both the sender and the receiver have the same
key. But during provisioning, which generally
happens only once, asymmetric encryption is
used. Check out the Bluetooth SIG’s glossary
of terms for additional definitions of terms—a
link is provided on the Circuit Cellar article
materials webpage [2].

STATEMENT OF THE PROBLEM

Asymmetric key encryption is the primary
method used on our PCs when we connect to a
secure site on the Internet. The beauty of this
method is that public keys can be transmitted
in clear text (unencrypted) to start a secure
session. Once I have your public key, I can
encrypt my messages and send them to you
securely. You use your private key (which
is uniquely paired with your public key) to
decrypt my message. You do the same thing
in reverse with any data that you want to
send to me. This beautiful scheme has worked
wonderfully since it was first proposed in the
1970s.

The problem for Bluetooth mesh is
that, since it chose to use symmetric key
encryption where both parties have the same
private key, how do all parties securely get
that private key? The Bluetooth mesh team
created a method of distributing a unique
private key that is executed before any device
joins the network. This is what we are going
to describe here.

At the highest level, an unprovisioned
device periodically sends a beacon in
clear text with its unique identifier and its
capabilities as a device. The Provisioner then
opens a link for that device and the device

y
Generation
Program

acknowledges the Provisioner. Provisioning
takes place when the Provisioner sends the
provisioning data to the device. This data
includes the private key, which is called the
Network key. There is more than one type
of key but we will only cover the primary
private key in this article. Provisioning also
authenticates that the unprovisioned device is
that it says it is. Authentication, although part
of provisioning, is another significant topic
that is too large to cover in this article. We
will look at authentication in a future article
in this series. Once the provisioning data is
successfully exchanged, the link is closed and
the device is now part of the Bluetooth mesh
network.

DRILLING DEEPER

The provisioning process consists of
five phases. Phase 1 is called Beaconing,

circuitcellar.com

FIGURE 2

Asymmetric key encryption (also called
Public key encryption) uses a public
and private key pair, which each party
generates separately.

Bob
Hello 4
Alical » Encrypt
7 Alice's
public key
6EB69570
08EQ3CE4
Alice
Y
Hello
= < Decrypt
Alice! Alice's
private key
FIGURE 3

The public key can be sent to anyone unencrypted (also called “in clear text”). They can then encrypt
messages with this public key and only the holder of the private key can decrypt the message.

51

52

CIRCUIT CELLAR » APRIL 2019 #345

FIGURE 4
Insecure provisioning

FIGURE 5
Secure provisioning

Provisioner New device

No OOB Available

Provisioning start

Y

Provisioning public key

(In clear text - unencrypted)
Provisioning public key

<

(In clear text - unencrypted)

New device

Provisioner

OOB Available

Provisioning start

Y

Provisioner reads public key

from new device (OOB)

Provisioner's public key -

Encrypted with new
devices public key

whereby the device lets the Provisioner know
it is desiring to be provisioned. Phase 2 is
called Invitation whereby the Provisioner
invites the device to join the network. The
device sends its capabilities including what
encryption algorithms it supports, the type
of public keys it supports and the type of
Out-of-Band (OOB) capabilities it supports.
Phase 3 is where the Provisioner and the
device exchange their public keys. Phase 4
is where the Provisioner authenticates the
device. Finally, in Phase 5 the Provisioner
distributes the provisioning data.

In the case of a browser and a secure
Internet site, the secure Internet site wants
anyone to be able to connect securely to the
site. However, not everyone has access to the
site. Typically access to the site is limited by
usernames and passwords.

This is not true for most mesh networks.
A mesh network doesn’t want to allow every

For detailed article references and

additional resources go to:

www.circuitcellar.com/article-materials
References [1] through [3] as marked in the article can be found there.

device in range to exchange the public keys in
order to have a secure network connection.
This is especially true with a mesh network
where a lot of the work of the device is
passing data from other devices to devices
downstream. You wouldn’'t want a rogue
device to be able to do this. So, for Bluetooth
mesh, it would not be wise to pass the public
keys in clear text (unencrypted).

With that in mind, the simple step (for PCs)
of exchanging public keys is not so simple for
Bluetooth mesh networks. For Bluetooth mesh
networks, the passing of the public keys must
be done securely to have a secure network.
The Bluetooth specification allows two ways
for the public keys to be exchanged. You can
securely exchange the public keys through
an O0OB method or insecurely (Figure 4 and
Figure 5).

There are a number of OOB methods
allowed by the specification. All of them involve
user interaction. One is that the public keys are
exchanged over a Near Field Communications
(NFC) link. Since a lot of the Bluetooth chips
include NFC capability, technically this is a
viable solution with no extra recurring cost to
the device. Other methods include some form
of user input. Again, the specification allows a
variety of input and output methods: audible,
alphanumeric, visual, vibration or discrete
button pushes. So, if your application can
allow that, you can provide the public keys via
some fairly simple I/0 mechanizations—albeit
requiring complicated user interaction.

REAL WORLD EXAMPLES

The Bluetooth ~mesh specification’s
statement that only the OOB method
of exchanging public keys is secure is
disconcerting for anyone concerned about
security and simplicity of installation. We know
that all of these OOB methods add significant
complications for the user during provisioning.
Next time we will drill into the details of the
“insecure” method of passing the public keys
that are used. I say that because, as I will
attempt to demonstrate next time, the method
is not as insecure as it might seem. For now,
let's assume that you are designing a system
for a customer using Bluetooth mesh. You
have a customer who wants the network to be
secure. The specification says that only the 00B
method of passing the public keys is secure.
Let’s look at some real-world implementations
and what options you have to create secure
provisioning.

Home Automation: Imagine that you
are designing a line of devices for home
automation. You want the network to be
secure. You want the installation to be simple.
The simplest way would be to install the
devices and turn them on. All devices would

circuitcellar.com 53

automatically be provisioned securely. How
can this be achieved? One option to achieve
this would be to completely bundle everything
pre-provisioned at the factory. This removes
the complexity of user involvement in the
passing of the public keys, keeping the
installation simple for the homeowner. The
homeowner could just install the devices, turn
them on and they would work. The problem is
that you would be selling a system, not home
automation devices. This may be acceptable
in some designs but not in others.

Alternatively, the factory could pre-install
all devices with the same shared public keys.
No public key exchange would take place
during provisioning. This would enable you to
sell devices rather than systems and be able
to replace faulty devices. This is similar to
the default trust center link key approach of
Zigbee and has some of the same pitfalls.

The NFC method is more flexible and quite
simple for the user. Each device would need to
be brought in close proximity (within inches)
to the Provisioner as part of the installation
procedure. If the device has a user interface,
alphanumeric input is also a possibility although
sometimes a cumbersome, error prone and
time consuming process. The blinking LED, the
vibrating box, the push button or the audible
beep are even more complicated for the user
but are open to you as designers.

Industrial Control: Imagine that you were
designing some kind of lighting control for
large buildings. There might be hundreds
of your devices installed throughout the
building. Your customers want it to be secure
and they are going to want it to be simple to
install and maintain. How would OOB public
key exchange work in this example? Pre-
provisioning at the factory is a possibility.
But, as with home automation, it means that
you are not selling devices but a system with
a predetermined number of devices.

Requiring the installer to bring each device
to the Provisioner or to use the user input or
output on each device is the other option. One
of our customers deemed it an unacceptable
burden on the installer to use NFC OOB and
require the installer to take the fixture and bring
it into close proximity with the Provisioner.
Even though the device had an LED and a push
button on it making visual or discrete input
0OOB a possibility, the user input method would
have been even more complicated. Requiring
the installer to push the button X number of
times or reading the pulse pattern on the LED
was completely rejected by our customer.

We had to take a hard look at how insecure
the Bluetooth provisioning process was
without OOB in our environment. The method
may not be as insecure as it seems. More on
that next time.

ABOUT THE AUTHOR

Bob Japenga has been designing embedded
systems since 1973. In 1988, along with his
best friend, he started MicroTools, which
specializes in creating a variety of real-
time embedded systems. MicroTools has a
combined embedded systems experience
base of more than 200 years. They love
to tackle impossible problems together.
Bob has been awarded 11 patents in
many areas of embedded systems and
motion control. You can reach him at
riapenga@microtoolsinc.com.

CONCLUSION

One only needs to read the number of
vulnerabilities that are published daily on the
CERT Vulnerability website [3] to know that
security is very hard to achieve. The
provisioning process is key (pun intended) to
creating a secure Bluetooth mesh network.
Next time we’ll describe the “insecure”
method of passing the public keys and
evaluate when this method is an acceptable
risk. But of course, only in thin slices. G

i | With the right tools

designing a microprocessor can be easy.

Okay, maybe not easy, but certainly less complicated. Monte
Dalrymple has taken his years of experience designing embedded
architecture and microprocessors and compiled his knowledge into
one comprehensive guide to
processor design in the real
world.

°

Monte demonstrates how Verilog

hardware description language
(HDL) enables you to depict,
simulate, and synthesize an
electronic design so you can
reduce your workload and

increase productivity.

n
\\

T

S
t “\{\\\\\\

