
CIRCUIT CELLAR • FEBRUARY 2019 #34354
CO

LU
M

NS

I n 2003, our company designed an energy
monitor to be used in a load shedding
application for electrical customers
who were charged for peak usage.

The target customers were universities and
municipalities, which had multiple sites but
a single electric bill that charged them for
peak usage as a single user. This common
billing paradigm made it important to know
the energy usage across multiple sites—
some upward to a mile away. Communication
between the nodes was done using a
proprietary radio to a central hub that passed
the data up to the central office where the
load shedding algorithms were performed.
We weren’t involved with the radio portion
during this initial stage.

After a few years, the relationship
between our customer and the radio designer
went south and they came to us to design
the radio. Initially we thought it would be a
piece of cake. Then we discovered that the
radios used a sophisticated mesh network
that auto-configured the routes, minimized
the hops from node to central hub and self-
healed when nodes dropped out. We got
gun shy about the complexity of the design
as well as our ability to test the vast array
of possible scenarios that can take place in
a dynamic mesh network. We decided to

redesign without changing the radio software
at all. But we got our first taste of a mesh
network and learned a little about what we
didn’t know.

A few years later, we got involved in a
smart-grid solar project from the ground up.
One of the requirements was to provide a
ZigBee interface to other devices connected to
the grid. So, again, we dipped our toes into the
wireless mesh network waters. But it became
very clear that we were complete novices about
these networks and had a lot to learn.

Over the next few articles, I want to
introduce a very popular and potentially
powerful entry into wireless mesh
networking. In July of 2017, the Bluetooth SIG
introduced Bluetooth mesh, which promised
to revolutionize IoT. This month I want to
introduce two of the competitors to Bluetooth
mesh—ZigBee and Thread—and highlight
some of the distinctions. These three network
protocols are often compared since they
all can use a common radio interface and
are often implemented on the same chip
(Figure 1). Although Wi-Fi mesh networks will
play a major role in the future of IoT, we won’t
be comparing it to these three because of its
power consumption. In the next set of articles
we will drill down into some of the details of
deploying a Bluetooth mesh network.

Embedded in Thin Slices

Wireless mesh networks are being widely deployed in a variety of
settings. In this article, Bob begins his series on Bluetooth mesh.
He starts with defining what a mesh network is, then looks at two
alternatives available to you as embedded systems designers.

Bluetooth Mesh (Part 1)

By
Bob Japenga

Alternatives Compared

circuitcellar.com 55
CO

LU
M

NS

DEFINITION OF TERMS
Node: This is a specific device on the

wireless mesh network that can send and
receive data on the network.

Hop: As a network data travels from the
source to its destination, it traverses between
one or more nodes. The transmission between
these nodes is called a hop.

Relay: When a node is transmitting
some other node’s data, it is a relay. (Some
notations call this a router.)

Wireless Mesh Network: A wireless mesh
network uses a topology where the nodes in
the network work together to move the data
from the source to the destination. The source
RF signal does not need to be received by the
destination node for the data from the source
to be received by the destination. Figure 2
shows a simple wireless mesh network. Node
A’s RF signal cannot be received by Nodes C,
D or E. Node B’s RF signal cannot be received
by Node’s D or E. But data from Node A can
be sent to Node E with the help of Nodes B, C
and D. Transmission from Node A to Node E is
a four-hop transmission.

Flooding/Routing: There are two basic
mechanisms for a wireless mesh network
to get data from the source node to the
destination node. One mechanism is called
flooding. The source node does not know who
is going to relay the data to get the data to
the destination. All nodes configured as relays
in the mesh that receive the data can forward
it on (also by flooding). The other mechanism
is called dynamic routing where the source
node has a routing table to indicate one or
more paths it can take to get its data to its
destination. Bluetooth uses what is called
managed flooding (more on that in a later
article). Thread and ZigBee use dynamic
routing tables which self-configure.

OOB Authentication: Out of Band (OOB)
authentication and key exchange is where
an alternate means of authenticating and
exchanging keys happens outside the normal

“band” of communications. For example,
requiring the user to enter a passcode is an
OOB method. Pressing an input on a node
device X times could be used as an OOB
method. Passing keys through a Near Field
Communications (NFC) channel is another.
Many of the ICs that are offered with Bluetooth
Mesh, Thread and ZigBee built in also offer
NFC capability.

TRADE-OFFS AMONG THE THREE
Let’s look at some of the trade-offs when

choosing a wireless mesh network.
Network Performance: Silicon Labs, which

makes parts that support all three mesh
networks, released a report documenting
a 12-month long study of the network
performance of the three mesh networks
[1]. The Silicon Labs benchmark showed very
little differences between the three protocols
on small networks (less than 24 nodes) and
small payloads (less than 10 bytes). Thread
and ZigBee outperform Bluetooth in both
throughput and latency as either the network
grows or the payload increases in size. So, if
latency and/or larger payloads are important
you, may want to stay away from Bluetooth.

Routing/Flooding: This could be a deal
breaker for some of your designs. The
Bluetooth standard left open the door for

FIGURE 1
The three network protocols—
Bluetooth mesh, ZigBee and Thread—
are often compared since they all can
use a common radio interface and are
often implemented on the same chip.

Node ANode A

Node BNode B

Node CNode C

Node DNode D

A simple wireless mesh networkA simple wireless mesh network

Node ENode E

FIGURE 2
Shown here is a simple wireless mesh
network. Node A’s RF signal cannot be
received by Nodes C, D or E. Node B’s
RF signal cannot be received by Node’s
D or E. But data from Node A can be
sent to Node E with the help of Nodes
B, C and D. Transmission from Node A
to Node E is a four-hop transmission.

CIRCUIT CELLAR • FEBRUARY 2019 #34356
CO

LU
M

NS

using dynamic routing, but for now doesn’t
support it. Thread and ZigBee support
dynamic routing. Dynamic routing can be a
serious problem for mobile nodes since the
network could be saturated with attempts to
dynamically reconfigure the system as the
optimal routes keep changing. The algorithms
that scared us away 15 years ago are complex
and probably not foolproof especially if
the nodes move around. Flooding creates
problems if you have to dynamically reduce
the number of relays in the system or reduce
the radio power because you have too many
nodes talking at the same time. For example,
if you were selling a system with 150 devices
spread out such that at full power and with all
nodes configured as relays, most nodes could
not hear each other, flooding would work fine.
But what if another customer placed your
devices such that all 150 nodes could hear
each other? The scheme could break down.
One Bluetooth mesh software development kit
(SDK) says:

The flooding-based approach to
message relaying can cause a lot of
redundant traffic on air, which may
impact the throughput and reliability
of the network. Therefore, it is highly
recommended to limit the number
of relays in a network to restrict this
effect. The rate of relay-enabled devices
in the network is a trade-off between
message route-redundancy and
reliability. It should be tuned according
to network density, traffic volumes,
network layout, and requirements for
reliability and responsiveness [2].

If you are creating large onesie networks
and can hand tweak the relays and radio
power, or if you’re creating a system with
a small number of nodes (less than 20),
managed flooding is not an issue.

Power Usage: Each wireless mesh network
allows you to minimize power with different
schemes. Each one has its own advantages
and disadvantages that you the designer must
understand if power is an issue. With ZigBee,
power can be minimized because transmit
and receive are synched allowing devices to all
sleep at the same time. Therefore, the ZigBee

radios can be off most of the time. At the
appropriate time slot, all radios wake up and
the network is alive. Bluetooth implements a
friend feature, which allows the designer to
have some devices that do not have power
constraints to store messages for its sleeping
friends. When the power constrained friend
wakes up, it asks its friend for all of its
messages. Thread enables the designer to
designate some devices as sleepy end nodes
that need not be awake for relaying and can
keep the radio off until needed.

Maturity: ZigBee has been around since
2003. Thread was first released in 2015 and
Bluetooth Mesh in July 2017. For those of you
who have experience with the SDKs of major
suppliers, you know that it takes time to
work out the bugs in these complex software
packages. Our experience bears this out with
these three types of mesh SDKs. Be prepared
to provide more hand holding the newer the
technology.

SETTING UP THE NETWORK
Each of these wireless mesh network

protocols is very different in how you set up
the network. Each offers different options,
which should be carefully considered when
you choose one protocol over another. There
are security trade-offs made with each
method. All three provide secure encrypted
transmissions. The challenge has to do with
jump starting the process. It would be ideal if
all this could be done at a secure factory where
the network is setup, nodes authenticated
and keys exchanged. But most of us don’t sell
systems like that. Let me try to provide the
basics. But I want to emphasize that the devil
is in the details of this process.

Bluetooth Setup: To securely install a node
on a Bluetooth mesh network, one node must
be a provisioner. The provisioner has two
primary tasks: 1) Establish a secure link over
which the keys can be exchanged to allow the
node to talk on the network. 2) Authenticate
that the new node is one that you want to
add to the network. There are several ways
that the specification allows this to happen.
To create a secure process is complicated
when designing headless nodes (when no OOB
methods are available). We will look at this
more in depth in our next article.

Thread Setup: Because each device is an
IPV6 address on the Internet, installing a
Thread node can be done with a smartphone,
a tablet or PC. Although simple for a home
device (the supporting organization touts
Thread for use in home automation), the IoT
designer needs to fully understand how this
will be done if you are installing hundreds of
nodes on a factory floor.

ZigBee Setup: Out of the box, with one

For detailed article references and additional resources go to:
www.circuitcellar.com/article-materials
References [1] through [3] as marked in the article can be found there.

RESOURCES
Nordic Semiconductor | www.nordicsemi.com
Silicon Labs | www.silabs.com

circuitcellar.com 57
CO

LU
M

NS

device designated as a ZigBee coordinator,
ZigBee nodes can be easily added and can
instantly create a mesh network transmitting
encrypted data. The problem is the way it is
done right out of the box. They use a default
Trust Center link key for encryption (published
widely on the web). If you use that method in
your design, a hacker could easily decrypt the
first transmission with this key and decrypt
the transmission with the secret keys without
any trouble. ZigBee provides the necessary
tools to setup the network securely, but they
require some OOB method.

SECURITY, RANGE AND MORE
Security: If you can accept the methods

prescribed by Bluetooth and Thread, they
are more secure (and more complicated)
than ZigBee. But Bluetooth and Thread have
also not been scrutinized as long. Even the
Bluetooth security vulnerability uncovered
in July 2018 (Cert Vulnerability #304725
[3]) would not affect a Bluetooth mesh
implementation that used OOB methods for
setting up the network. So much depends on
you the developer following good practices
including: 1) Making the device tamper-
resistant. (for ZigBee especially, which relies
on the Trust Center); 2) Network setup should
pass initial security parameters using an
OOB method; and 3) Refreshing Keys often.
Bluetooth implementations are required to
provide a function that does this and the SDK
we used had a single function to perform this.

Number of Nodes: If we are thinking
big, Thread and ZigBee node size limitation
may make Bluetooth a big winner for large
networks. Here is the breakdown:

Bluetooth Mesh: 32,767 nodes with a
maximum of 126 hops
Thread: 250+ nodes with the maximum
number of relays set to 32
ZigBee: 250 nodes

Range: Don’t believe the stated range
for any of these. One SDK states that for a
Bluetooth 5.0 radio to not expect more than
100 feet. However, with a Bluetooth 5.0 radio,
we did get some impressive distances through
office walls compared to what we get with our
Bluetooth 4.2 headsets. Here are the specs
nonetheless:

Bluetooth Mesh: 100 feet – 1,000 feet
Thread: 100 feet
ZigBee: 30-300 feet

Gateway Requirements: Because the Thread
mesh network nodes are IPV6 addressable,
the Gateway (called “Edge Router” in Thread
terminology) can be generic (in other words,

no special software). This is not true for the
ZigBee or Bluetooth gateways.

CONCLUSION
As the Carpenters’ song goes: “We’ve only

just begun…” This topic is gigantic. The
Bluetooth specification is hundreds of pages
of thick prose. But we have started you down
the path—of course—in thin slices. Next time
we will look in more depth at setting up a
Bluetooth mesh network.

ABOUT THE AUTHOR
Bob Japenga has been designing embedded
systems since 1973. In 1988, along with his
best friend, he started MicroTools, which
specializes in creating a variety of real-
time embedded systems. MicroTools has a
combined embedded systems experience
base of more than 200 years. They love
to tackle impossible problems together.
Bob has been awarded 11 patents in
many areas of embedded systems and
motion control. You can reach him at
rjapenga@microtoolsinc.com.

cc-webshop.com

Circuit Cellar 2018 Archive

Order yours today

