
CIRCUIT CELLAR • APRIL 2017 #32166
CO

LU
M

NS

Last time, we looked at three axioms or pithy
phrases that can easily be memorized and

repeated while building a team of embedded
systems developers. We have used axioms in
our business from the very beginning. When
we launched the company in my basement,
my business partner’s wife would come on
occasion to encourage us. When she’d leave,
she say, “Carry on bravely.” Somehow this
has stuck with the company after almost 30
years. When we leave, we often will say to the
one left working late: “Carry on bravely.”

Another axiom that we heard a long time
ago was that “vision leaks.” If you are trying
to keep people on track about the core things
that you are doing, using these pithy phrases
can help you stop the vision from leaking. In
my previous article, the three we looked at
were:

•	 “If it’s not tested, it doesn’t work.”
•	 ”Always weigh the ‘personal’”
•	 “Ask for help.”

This month we will look at a few more.

2 HEADS ARE BETTER THAN 1
Today, I was trying to take out a 50-year-

old water pump and pressure tank from my
basement. The unit was used when the house
was first built to improve the very low water
pressure on our street. My son-in-law Jeff
was with me. It was a nontrivial task. We
debated different strategies of moving it and
draining it. It was extremely heavy and bulky.
When we finally got it out of the basement, I
was so appreciative of having someone else

with me to do this. The system had sat idle
for 30 years. It was an eyesore and took up
space. But I just never removed it because
I was afraid of encountering insurmountable
difficulties. But having someone else there
made all the difference. Now I wonder why I
didn’t do it years ago.

This is the heart of the first axiom we
will look at this month. And this is where
the axiom is most effective. Efficiency is
certainly important in what we do. So,
having two programmers assigned to work
together all the time is not the way we apply
this axiom. “Extreme Programming” is a
software methodology that takes this axiom
to the extreme. Two people work together
on all aspects of software development. Our
experience is that two heads are not better
than one—all the time. But very often, we face
a challenge that we dread. Or a challenge that
we know is technically very daunting.

This axiom is slightly different than the last
article’s “Ask for Help” axiom. You apply that
for very short-term assistance. “Two heads
are better than one” is used for a longer-term
commitment.

And that’s how we apply this axiom at
MicroTools. We look out for those situations
where having two working together is
better than one. It may be something that is
technically challenging. Most often, it is like
my water pump project. There is something
nobody wants to do. Others notice it and offer
to join me in the project.

DOCUMENT IT
Many decisions, ideas, and design details

EMBEDDED IN THIN SLICES

Ready to strike out on your own? This month, Bob
presents more tips for building a successful embedded
systems consulting company.

By Bob Japenga

Build an Embedded Systems
Consulting Company (Part 4)
Documentation, Commitments, and Insight

circuitcellar.com 67
CO

LU
M

NS

feel obvious when we first think of them and
therefore we do not record or document them.
What is obvious to us today may become
obscure (or forgotten) next week. Over the
years, I have been amazed at how many
things were not obvious when I came back to
them years later (or even months later).

The challenge is that, in reality, you
cannot document everything. I remember
working on an avionics system for the F-15
in the 1980s. At the end of the project, we
took a picture of the team leaders next to the
documentation. The stack of paper was more
than 6’ high. So, I know that you can over
document something.

Here are some guidelines that we give our
engineers. Specifications are important. In
our business, documenting all requirements
is a must. We are not just talking about
software requirements specifications (SRS)
or test specifications. We are talking about
any time we nuance the specification in
some way internally or with a customer.
For example, the SRS may require you to
provide an output within 10 ms ±1 ms upon
receipt of a particular input (or combination
of inputs). The hardware design or some
system constraint might require the software
to output to the port on the microcontroller
within 5 ms upon receipt of the input in order
to meet the 10 ms requirement. Strictly
speaking, this, and others like it, should be
folded into SRS. But that may become either
an untestable requirement (the port output is
not brought out of the box) or very difficult
to test. You may choose to keep the 10 ms
requirement for verification reasons. But
you must provide some place where you can
document this requirement.

We have often documented many of these
via e-mail. It does provide a paper trail.
But if the project is large or lengthy, e-mail
specification chains can get very unwieldy
very quickly. Personally, I like keeping them all
in one place where they are easily accessed. I
usually put them in our bug tracking system
because it is permanent, accessible to any in
the project and searchable.

Documenting lessons learned is useful. We
try to hold one or more meetings at the end
of a project and brainstorm what we learned
from this project. For years, we did not write
these down. But over time I have realized
that a lot of mistakes get repeated because
we did not write down our lessons learned.
A Wiki is a great place for a company-wide

“lessons learned” document. Even if no one
ever goes back to it, the process of writing
it down increases that chance that you will
not make the same mistake again. I also
recommend that just reread them before you
start something new. It is a great reminder of
the mistakes of the past.

A much-overlooked documentation
requirement has to do with problems you
encountered and how you fixed them. It
seems like pulling teeth to get software
designers to do this. Here is how it often
works. The designer writes some code the
way any good programmer would write it
using a straightforward and simple algorithm.
It fails for some reason. They find that the
obvious and simple algorithm doesn’t work in
this case. They correct it with a much more
complicated algorithm. Sometimes after
great effort. They move on. The next designer
(who might be you) comes along and needs to
make a change to the module. They see this
very complicated solution and think: “This
should be much simpler.” They repeat the
same mistake.

This happens more often than you might
think. We try to encourage our designers to
write out the problems and failed algorithms
as part of the documentation in the source
code. It can make the source code wordier,
but it will save you much time in the future.

Promises and commitments are
important. We require that any time our
engineers promise something (a deliverable
or a schedule milestone), either to each other
or to customers, it must be written down. We
have found that e-mail works reasonably well
for this on the size of projects (one to 10 man
years) we work on. Of course, if the projects
are much larger, other means of documenting
these would be required.

Decisions also should be documented. I
am amazed how often I find that one of our
designers has made (usually with others) a
decision that affects others inside or outside
the company. This is another one that is
difficult to build into the culture. Just as
“vision leaks,” axioms leak unless relentlessly
hammered home with reminders and
encouragements.

Another aspect of decision making is:
“Why did you make that decision?” For
example, it was maddening to get an e-mail
saying: “We decided to delay the release of
the software until next month.” What? Thanks
for documenting the decision. But why? Here

We require that any time our engineers promise something (a deliverable or a schedule
milestone), either to each other or to customers, it must be written down.”

CIRCUIT CELLAR • MAY 2017 #32268
CO

LU
M

NS

is something that can happen on a medium-
sized project. A demonstration of the
software is scheduled for March 1. The team
is working hard to meet the deadline. The
customer is unavailable on March 1 and so
the demonstration is rescheduled for March
8. It isn’t enough to say that a decision was
made to slip the demonstration schedule by
one week. Why has it slipped? Others higher
up in the customer’s company might assume
that we are causing the slip.

In summary, I would not say more
documentation is better. We have all seen
code comments like:

TheCounter++;	// Increment the counter

So, we need to be wise in what we
document. We should ask ourselves: “If my
memory of this project was wiped clean while
retaining all of my skills, what do I need to
know about this design to modify it, fix it,
or re-use it?” It is not easy to make these
trade-offs. Another pithy sub-axiom we use
is: “When in doubt, write it out.”

REVIEW COMMITMENTS
Just recently we delivered a software

update to a customer. When the customer
got it, he found that we missed an important
commitment we’d made early on in the
project. This is easy to do when there are a lot
of meetings, e-mails, phone calls, and action
items.

In the course of doing business or working
on a project, we will make commitments,
decisions, and agreements. I like to have a
single source per project on commitments I
make. I use Google Tasks and create a check
list of the commitments I have made on a
per-task basis. Google Tasks allows me to
set a date for the commitment which will be
automatically put onto my calendar.

I am amazed at how many fall in the crack
until I review these commitments. Google

calendar is a help because you can set a
notification to the task so many hours or days
before it is due.

SHARE THE INSIGHT
We have some great people on our team.

I am amazed at how much each one of them
knows. They often spend hours or days
learning some new skill, new methodology,
or really anything new. The problem for
us is figuring out how we can share the
information. Some things are easy to share.
You find a cool tool that you never saw. You
send everyone the link.

But sometimes we are learning so much
and moving so fast we don’t take the time
to share a macro or shortcut that we have
found helpful. It takes time. We tried creating
a Wiki, but we did not have the commitment
to really implement it. And I am not sure how
to encourage the team to share insights with
each other. One idea I’ve had but haven’t
implemented is to have a monthly lunch
where we share some insight or trick or tool
that we have found useful. Perhaps you have
a way to encourage your team to share the
knowledge and insights they have gained.

KEEP IN TOUCH
I find it particularly maddening when I go

looking for help from someone in the office
and find that they are not yet in or left early.
We are unusual in this day and age in that we
don’t encourage working at home. We believe
in the importance of working together in
creating these very complicated devices. That
said, we all have a number of responsibilities
outside of work which can affect our work
schedule. We have opted for the following
rule: if you are going to be out of the office,
it must be put on Google calendar. You must
indicate when you’re leaving, where you’re
going (generally), and when you’ll be back.
This is essential for continuity and building
the right team so you can build the right
product.

TRACK WHAT MATTERS
At one level, these axioms appear almost

self-evident. Why even say them? We are
complex beings creating complex systems in
complex environments. Having short and pithy
ways that are unique to your organization can
help you keep on track with the things that
matter in the midst of that complexity. If you
have some of your axioms that you would
like to share with me, please drop me a line.
Thanks.

Next time, we will cover the last of our
business axioms. But, of course, only in thin
slices.

ABOUT THE AUTHOR
Bob Japenga has been designing embedded
systems since 1973. In 1988, along with his
best friend, he started MicroTools, which
specializes in creating a variety of real-
time embedded systems. MicroTools has a
combined embedded systems experience
base of more than 200 years. They love to
tackle impossible problems together. Bob has
been awarded 11 patents in many areas of
embedded systems and motion control. You
can reach him at rjapenga@microtoolsinc.
com.

circuitcellar.com 69
CO

LU
M

NS

