APPLICATIONS CASE HISTORY

TEST

AN

Bob Japenga, MicroTools Inc

If its not tested,
it doesnt
work!

Joseph: Bob, you got a call while you were out. It seems
that manufacturing has reported that those new systems
are occasionally locking up after power on.

Bob: Did they say how frequently?

Joseph: Well, Al said about one in every hundred units
fails. But when he takes the failed unit, powers it off and
on, everything works fine. Then he powers it up and
down another six or seven times, and it comes up properly every time. Have
you ever seen anything like this?

Bob: I might've seen that problem once or twice on the breadboards, but I
attributed it to the wirewrap boards. You know how flaky those were. And
the day after tomorrow is the big rollout for all the dealers and distributors.
What great timing! How many systems are they shipping?

Joseph: A lot—you’d better call Al and get the problem straightened out.

Power-on intermittent failures—what a nightmare! In the roughly two
decades of designing systems, I've experienced them in just a few products
I've worked on, but enough to know they smell of time, money and headaches.

What's the problem in the above scenario, which is based on an actual
incident? Was it software or hard-
ware? In talking with manufacturing,
we didn’t learn any more. The failing
units were ROM-based embedded
PC-like systems using a custom

Listing 1a—Before the fix
Turn interrupts off

Set up the serial interrupt vector
Turn interrupts on

Turn interrupts off

Set up the PIC //** At this point interrupts are enabled
//** The PIC is enabled but interrupts are turned off
//** at the UART. The fatal flaw is that the
//** interrupt out of the UART, though disabled, is floating
Turn interrupts on
Turn interrupts off
Set up the Interrupt Enable Register (IER)
Set up the Modem Control Register (MCR)
//** Here the OUT2 line is set and the
//** interrupt line goes Low
Turn interrupts on

Listing 1b—After the fix

Turn interrupts off

Set up the serial interrupt vector
Turn interrupts on

Turn interrupts off

Set up the Modem Control Register
Set up the PIC

Turn interrupts on

Turn interrupts off

Set up the Interrupt Enable Register (IER)
Turn interrupts on

PERSONAL ENGINEERING H April 1995

BIOS, an smx executive, a Greenleaf
Comm-++ serial library and 600,000
bytes of custom application code.
Software development was per-
formed about 50 miles from the hard-
ware design and manufacturing facil-
ity.

Let’s take a look at how we at-
tacked the problem. The first step in
troubleshooting began with attempt-
ing to duplicate the problem. After
several hours of laborious power cy-
cling of three units, the manufactur-
ing department located a unit that
failed approximately once out of ev-
ery three times. Al, the hardware en-
gineer, obtained that machine so we
could readily duplicate the problem.

Upon further investigation, we de-

53

POWER-ON FAILURES

Hardware

* Improper hardware initialization

» Temperature-sensitive race conditions
* Vibration-sensitive interconnects

* Component-sensitive race conditions

Some design
Software problems that
« Incorrect hardware initialization ot
* Unprotected interrupt windows operation
* Power On System Test problems following
* Noisy or noise-susceptible power circuitry power up

termined that the problem manifested itself as follows:
the system would successfully perform its power-on self
test (POST), initialize the parallel ports and then hang up.
Sometimes it would display the application’s startup
screen and sometimes not. We noticed another quirk that
arose occasionally, but an abnormality we could associ-
ate with the failure: the POST routine, which normally is
a 5-sec test, would take 5-10 sec longer.

We wanted to take a closer look at the logic and so
connected a logic analyzer to the unit—but the unit
wouldn’t fail. I was beginning to smell a hardware prob-
lem. After several hours of prodding, heating, cooling,
and power cycling, we finally got the unit to fail using
the logic analyzer. With it we encountered enough fail-
ures to get an adequate trace of what the system was
doing and found that it was getting hung up in a serial-
port interrupt service routine (ISR). We began to specu-
late on various causes and suspected that perhaps spuri-
ous serial interrupts were occurring during power up
and the system wasn’t handling them well.

We took several units that weren't failing and began
power cycling them at the software facility while blasting
the ports with streams of serial data. Bingo! The units
that previously didn’t fail were exhibiting the same symp-
tom at power up as reported by manufacturing. We then
found that the application code didn’t take into account
data coming in on the serial port during power up.

We fixed the code bug, and now we could power up
the test units while blasting them with data on all four
serial ports without any crashes. We reasoned that the
system must’ve been getting spurious serial-port interrupts.

Where were these spurious interrupts coming from?
In pursuing the source of the interrupts, Al observed that
the interrupt line out of the UART (an 8250 type) was
floating during the POST routine. Shortly after the appli-
cation code started, the line went Low, thus allowing the
UART to send an interrupt to the programmable inter-
rupt controller (PIC). Upon reviewing the Greenleaf ini-
tialization code, we found that it was enabling PIC inter-
rupts before it enabled the special interrupt line used on
the PC implementation of the serial port (the OUT2 line

54

on the 8250). On our UART chip, a Texas Instrument
TL16C451, until the software enabled OUT2, the inter-
rupt line connected directly to the PIC floated. The TI
spec didn’t state that this signal was tristated. However,
because this chip is commonly used in PCs where the
interrupt line to the PIC might be shared, the hardware
was correct. Listing 1 shows the pseudocode fragment
before and after the fix. This fragment represents several
modules, explaining why it turns interrupt on and off so
many times.

We had found both a window of opportunity for spu-
rious interrupts to crash the system and the source of the
interrupts! We closed the window in the application.
With this latest discovery, we shot off the source of those
interrupts by modifying the Greenleaf library. Because
the interrupt line was dangling in the breeze during a
brief period of time that interrupts were enabled, if this
line was ever above the logic threshold, it would act just
like blasting the unit with serial data. We suspected that
certain units must be encountering some spurious inter-
rupts at power up that caused the crash. Having con-
vinced ourselves of the logic, we downloaded the fix to
the hardware engineer, confident that the bug was fixed
and went home satisfied.

Another surprise awaits

However, the next day brought the following conver-
sation:

Al: Bob, I've got bad news. The new software didn’t fix
the problem. The units still fail about once every 100
power ups.

Bob: What?!? Of course the fix works. We duplicated the
problem here, remember? You must not have sent the
right software to manufacturing. Have you checked the
date on the code?

Al: Yup—everything checks out. But it still crashes, it’s
still hung up in the same place.

Well, back to the drawing board. We poured over the

PERSONAL ENGINEERING H April 1995

Rather buy it than build it?

For those who prefer not to throw together their own
power-on tester, a $295 unit from MicroTools Inc (Simsbury,
CT (800) 651-6170) does the job. Named the Poc-it, the
desktop unit cycles a unit-under-test by providing one 120V
ac output at 10A as well as a 5A relay contact to cycle dc
power. It can keep track of external events with two 5V dc
inputs and one optically isolated 10-30V dc input. The user
interface consists of a 1 line x 16-character LCD and a 4-
button keypad. Simple menus show operators how to set
On and Off times of each output with 10-msec resolution in
the range from 0.01 sec to 99 min 59.99 sec, reset the
input counters, start/stop a test and view cycle counters for
all 170 lines. You can also delay input sampling following
power on to allow unstable outputs to settle.

Greenleaf serial-interrupt code. It looked clean. What
could be causing the code to hang in a loop? When an
interrupt was pending, the software read the UART’s
data register but would not clear the interrupt. What
could be the cause? More interrupts?

We thought that it must be a hardware problem. Al
reported that the interrupt line looked clean with the
latest fix. In addition, each running of the POST routine
took the same amount of time. (At least we fixed one
problem: Occasionally, some spurious interrupts were
coming in and tying up the system during the POST).

At last, it dawned on someone that the UART’s data
register wasn’t being read during the ISR. An 8250 UART
automatically clears an incoming interrupt when the data
register that caused the interrupt is read. From the logic-
analyzer trace we knew that the data register appeared to
be read. Yet the interrupt wasn’t being cleared. This
could happen if, when the data register is read, the 8250’s
Divisor Latch Access Bit (DLAB) is set. The data register
shares the same address with one of the registers that sets
the baud rate (Divisor Latch LS). When you set the DLAB
bitin the Line Control register, you can then read or write
the baud rate. When the software clears the DLAB bit, the
program can read or write to the data register. If an
interrupt occurs when the DL bit is set and the ISR as-
sumes that the DLAB is cleared, the pending interrupt
never gets cleared because the data port is never read.

We poured over Greenleaf’s code for setting the baud
rate and found two more flaws in this section of code.

PERSONAL ENGINEERING H April 1995 55

POWER-ON FAILURES

The ISR assumed that the DL bit was already cleared
rather than defensively clearing it to assure no mixups.
Secondly, the routine that set the baud rate did not dis-
able interrupts while the DLAB bit was set. Before the
baud-rate function cleared the DLAB bit, a tiny window
existed where a serial interrupt could occur. During the
ISR that occurred in this window, the ISR read the data
register; but because the DLAB was set, the source of the
interrupt never got cleared. The result was a hung system.

Having found yet another window in Greenleaf’s soft-
ware, it wasn’t with quite the same confidence that we
uploaded these new fixes to Al. Would it work? It was
late in the evening, and even though Al cycled a test unit
running the new code a hundred or so times without any
failures, we had been this route before. He needed a way
to test the system overnight because the next day we
planned to ship the units for the big rollout. He jerryrigged
a relay to cycle the power, a digital counter to monitor

This space left intentionally blank.

POWER-ON FAILURES

the number of cycles and a function generator to drive
the relay. We had kludged together such arrangements
before when dealing with similar problems, but in this
case, he couldn’t find all the pieces to test the fix. We’d just
have to take a chance that the limited test proved the fix.

As it turned out, the fix was fine. But this experience
got me thinking—in all these years as a designer, I've
gone about testing completely wrong. As part of my
design verification—hardware, software and systems—I
never power-on cycled any design thousands of times to
make sure it worked on every power-up. In spite of the
fact that I've encountered these problems before, I never
proactively sought out such failures; they always sought
me out.

I also remembered that in the past these power-on
failures first arose late in the development cycle. Often
the manufacturing group found them, and even worse,
we got word from a customer. If a product is even re-
motely successful, it will be powered up thousands of
times.

This space left intentionally blank.

The power-on problems were sometimes due to hard-
ware and sometimes software (see table), but the fix was
never obvious. Frequently, these problems were difficult
to duplicate, and occasionally our fix was questionable.
Often we had to make several attempts to solve the prob-
lem. After each fix, we had to retest the system for thou-
sands of cycles before the problem manifested itself again.

The next day, I resolved that I would subject every
system I ever designed to a power-on cycle test before I
released it. I searched for a simple piece of test equip-
ment that would enable me to do that job. One reason I
never tested my designs in this way was because it was
difficult to do.

When I found none, I decided that my firm should
create such a product (see sidebar, “Rather buy it than
build it?”). A good example of a use for this instrument is
in testing a switching power supply. It would activate
the AC power and sample the appropriate output volt-
age. Another example would be an embedded PC system
with a parallel port. After the system completes its diag-
nostics, it might strobe the printer port to initialize the
printer and port. You could sample this signal as the
success input. Another example would be to test for a
problem that a PESIN columnist had with an FPGA-
based system when toggling the power (see reference).

Meanwhile, at our firm we’ve developed a new motto:
If it's not tested, it doesn’t work. Designing complex
systems has confirmed the truth of this motto for me. I'm
embarrassed to admit how often obvious designs that I
am tempted not to test don’t work when tested. One
significant area is in Power On testing. No matter whether
you use a commercial product or design your own Rube
Goldberg contraption, test your designs with thousands of
turn ons. Seek out failures before they seek you out. PE&IN

Reference

Rosenthal, S, “It sometimes takes a microcontroller to
boot up an FPGA,” PE&IN, Nov 1994, pgs 75-78.

Bob Japenga is director of marketing at MicroTools Inc (Simsbury,
CT (800) 651-6170), a firm focused on developing embedded
systems and PC-based tools. Since 1988, the firm has developed
products for the aerospace, glass and mailing-systems industries.

56 PERSONAL ENGINEERING H April 1995

